Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Différenciez en utilisant la règle du quotient qui indique que est où et .
Étape 2
Étape 2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 2.3
Remplacez toutes les occurrences de par .
Étape 3
Étape 3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.3
Simplifiez l’expression.
Étape 3.3.1
Multipliez par .
Étape 3.3.2
Déplacez à gauche de .
Étape 3.3.3
Réécrivez comme .
Étape 3.4
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.5
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.6
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.7
Simplifiez l’expression.
Étape 3.7.1
Additionnez et .
Étape 3.7.2
Multipliez par .
Étape 4
Étape 4.1
Appliquez la propriété distributive.
Étape 4.2
Appliquez la propriété distributive.
Étape 4.3
Simplifiez le numérateur.
Étape 4.3.1
Simplifiez chaque terme.
Étape 4.3.1.1
Multipliez par .
Étape 4.3.1.2
Réécrivez comme .
Étape 4.3.2
Soustrayez de .
Étape 4.4
Remettez les termes dans l’ordre.
Étape 4.5
Factorisez à partir de .
Étape 4.5.1
Factorisez à partir de .
Étape 4.5.2
Factorisez à partir de .
Étape 4.5.3
Factorisez à partir de .
Étape 4.6
Factorisez à partir de .
Étape 4.7
Réécrivez comme .
Étape 4.8
Factorisez à partir de .
Étape 4.9
Réécrivez comme .
Étape 4.10
Placez le signe moins devant la fraction.