Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.2.2
La dérivée de par rapport à est .
Étape 1.2.3
Remplacez toutes les occurrences de par .
Étape 1.3
Différenciez.
Étape 1.3.1
Multipliez par .
Étape 1.3.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.3
Simplifiez les termes.
Étape 1.3.3.1
Multipliez par .
Étape 1.3.3.2
Associez et .
Étape 1.3.3.3
Associez et .
Étape 1.3.3.4
Annulez le facteur commun à et .
Étape 1.3.3.4.1
Factorisez à partir de .
Étape 1.3.3.4.2
Annulez les facteurs communs.
Étape 1.3.3.4.2.1
Factorisez à partir de .
Étape 1.3.3.4.2.2
Annulez le facteur commun.
Étape 1.3.3.4.2.3
Réécrivez l’expression.
Étape 1.3.3.4.2.4
Divisez par .
Étape 1.3.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.5
Multipliez par .
Étape 1.4
Simplifiez
Étape 1.4.1
Comme est une fonction impaire, réécrivez comme .
Étape 1.4.2
Multipliez .
Étape 1.4.2.1
Multipliez par .
Étape 1.4.2.2
Multipliez par .
Étape 2
Étape 2.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.1.2
La dérivée de par rapport à est .
Étape 2.1.3
Remplacez toutes les occurrences de par .
Étape 2.2
Différenciez.
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Associez et .
Étape 2.2.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.4
Multipliez par .
Étape 3
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 4
Prenez le sinus inverse des deux côtés de l’équation pour extraire de l’intérieur du sinus.
Étape 5
Étape 5.1
La valeur exacte de est .
Étape 6
Définissez le numérateur égal à zéro.
Étape 7
La fonction sinus est positive dans les premier et deuxième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le deuxième quadrant.
Étape 8
Étape 8.1
Multipliez les deux côtés de l’équation par .
Étape 8.2
Simplifiez les deux côtés de l’équation.
Étape 8.2.1
Simplifiez le côté gauche.
Étape 8.2.1.1
Annulez le facteur commun de .
Étape 8.2.1.1.1
Annulez le facteur commun.
Étape 8.2.1.1.2
Réécrivez l’expression.
Étape 8.2.2
Simplifiez le côté droit.
Étape 8.2.2.1
Soustrayez de .
Étape 9
La solution de l’équation est .
Étape 10
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 11
Étape 11.1
Annulez le facteur commun à et .
Étape 11.1.1
Factorisez à partir de .
Étape 11.1.2
Annulez les facteurs communs.
Étape 11.1.2.1
Factorisez à partir de .
Étape 11.1.2.2
Annulez le facteur commun.
Étape 11.1.2.3
Réécrivez l’expression.
Étape 11.1.2.4
Divisez par .
Étape 11.2
La valeur exacte de est .
Étape 12
est un minimum local car la valeur de la dérivée seconde est positive. On parle de test de la dérivée seconde.
est un minimum local
Étape 13
Étape 13.1
Remplacez la variable par dans l’expression.
Étape 13.2
Simplifiez le résultat.
Étape 13.2.1
Divisez par .
Étape 13.2.2
Multipliez par .
Étape 13.2.3
La valeur exacte de est .
Étape 13.2.4
Multipliez par .
Étape 13.2.5
La réponse finale est .
Étape 14
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 15
Étape 15.1
Annulez le facteur commun de .
Étape 15.1.1
Annulez le facteur commun.
Étape 15.1.2
Divisez par .
Étape 15.2
Simplifiez le numérateur.
Étape 15.2.1
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car le cosinus est négatif dans le deuxième quadrant.
Étape 15.2.2
La valeur exacte de est .
Étape 15.2.3
Multipliez par .
Étape 15.3
Placez le signe moins devant la fraction.
Étape 16
est un maximum local car la valeur de la dérivée seconde est négative. On parle de test de la dérivée seconde.
est un maximum local
Étape 17
Étape 17.1
Remplacez la variable par dans l’expression.
Étape 17.2
Simplifiez le résultat.
Étape 17.2.1
Annulez le facteur commun de .
Étape 17.2.1.1
Annulez le facteur commun.
Étape 17.2.1.2
Divisez par .
Étape 17.2.2
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car le cosinus est négatif dans le deuxième quadrant.
Étape 17.2.3
La valeur exacte de est .
Étape 17.2.4
Multipliez .
Étape 17.2.4.1
Multipliez par .
Étape 17.2.4.2
Multipliez par .
Étape 17.2.5
La réponse finale est .
Étape 18
Ce sont les extrema locaux pour .
est un minimum local
est un maximum local
Étape 19