Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Définissez les polynômes à diviser. S’il n’y a pas de terme pour chaque exposant, insérez-en un avec une valeur de .
+ | + | + | + | + |
Étape 1.2
Divisez le terme du plus haut degré dans le dividende par le terme du plus haut degré dans le diviseur .
+ | + | + | + | + |
Étape 1.3
Multipliez le nouveau terme du quotient par le diviseur.
+ | + | + | + | + | |||||||||
+ | + | + |
Étape 1.4
L’expression doit être soustraite du dividende, alors changez tous les signes dans
+ | + | + | + | + | |||||||||
- | - | - |
Étape 1.5
Après avoir changé les signes, ajoutez le dernier dividende du polynôme multiplié pour déterminer le nouveau dividende.
+ | + | + | + | + | |||||||||
- | - | - | |||||||||||
+ | + |
Étape 1.6
Extrayez les termes suivants du dividende d’origine dans le dividende actuel.
+ | + | + | + | + | |||||||||
- | - | - | |||||||||||
+ | + | + |
Étape 1.7
Divisez le terme du plus haut degré dans le dividende par le terme du plus haut degré dans le diviseur .
+ | |||||||||||||
+ | + | + | + | + | |||||||||
- | - | - | |||||||||||
+ | + | + |
Étape 1.8
Multipliez le nouveau terme du quotient par le diviseur.
+ | |||||||||||||
+ | + | + | + | + | |||||||||
- | - | - | |||||||||||
+ | + | + | |||||||||||
+ | + | + |
Étape 1.9
L’expression doit être soustraite du dividende, alors changez tous les signes dans
+ | |||||||||||||
+ | + | + | + | + | |||||||||
- | - | - | |||||||||||
+ | + | + | |||||||||||
- | - | - |
Étape 1.10
Après avoir changé les signes, ajoutez le dernier dividende du polynôme multiplié pour déterminer le nouveau dividende.
+ | |||||||||||||
+ | + | + | + | + | |||||||||
- | - | - | |||||||||||
+ | + | + | |||||||||||
- | - | - | |||||||||||
+ | + |
Étape 1.11
La réponse finale est le quotient plus le reste sur le diviseur.
Étape 2
Séparez l’intégrale unique en plusieurs intégrales.
Étape 3
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 4
Appliquez la règle de la constante.
Étape 5
Étape 5.1
Décomposez la fraction et multipliez par le dénominateur commun.
Étape 5.1.1
Factorisez à partir de .
Étape 5.1.1.1
Factorisez à partir de .
Étape 5.1.1.2
Factorisez à partir de .
Étape 5.1.1.3
Factorisez à partir de .
Étape 5.1.2
Pour chaque facteur dans le dénominateur, créez une nouvelle fraction en utilisant le facteur comme dénominateur et une valeur inconnue comme numérateur. Comme le facteur dans le dénominateur est linéaire, placez une variable unique à sa place .
Étape 5.1.3
Multipliez chaque fraction dans l’équation par le dénominateur de l’expression d’origine. Dans ce cas, le dénominateur est .
Étape 5.1.4
Annulez le facteur commun de .
Étape 5.1.4.1
Annulez le facteur commun.
Étape 5.1.4.2
Réécrivez l’expression.
Étape 5.1.5
Annulez le facteur commun de .
Étape 5.1.5.1
Annulez le facteur commun.
Étape 5.1.5.2
Divisez par .
Étape 5.1.6
Simplifiez chaque terme.
Étape 5.1.6.1
Annulez le facteur commun de .
Étape 5.1.6.1.1
Annulez le facteur commun.
Étape 5.1.6.1.2
Divisez par .
Étape 5.1.6.2
Appliquez la propriété distributive.
Étape 5.1.6.3
Déplacez à gauche de .
Étape 5.1.6.4
Annulez le facteur commun de .
Étape 5.1.6.4.1
Annulez le facteur commun.
Étape 5.1.6.4.2
Divisez par .
Étape 5.1.7
Déplacez .
Étape 5.2
Créez des équations pour les variables de fractions partielles et utilisez-les pour définir un système d’équations.
Étape 5.2.1
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients de de chaque côté de l’équation. Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 5.2.2
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients des termes qui ne contiennent pas . Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 5.2.3
Définissez le système d’équations pour déterminer les coefficients des fractions partielles.
Étape 5.3
Résolvez le système d’équations.
Étape 5.3.1
Résolvez dans .
Étape 5.3.1.1
Réécrivez l’équation comme .
Étape 5.3.1.2
Divisez chaque terme dans par et simplifiez.
Étape 5.3.1.2.1
Divisez chaque terme dans par .
Étape 5.3.1.2.2
Simplifiez le côté gauche.
Étape 5.3.1.2.2.1
Annulez le facteur commun de .
Étape 5.3.1.2.2.1.1
Annulez le facteur commun.
Étape 5.3.1.2.2.1.2
Divisez par .
Étape 5.3.2
Remplacez toutes les occurrences de par dans chaque équation.
Étape 5.3.2.1
Remplacez toutes les occurrences de dans par .
Étape 5.3.2.2
Simplifiez le côté droit.
Étape 5.3.2.2.1
Supprimez les parenthèses.
Étape 5.3.3
Résolvez dans .
Étape 5.3.3.1
Réécrivez l’équation comme .
Étape 5.3.3.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 5.3.3.2.1
Soustrayez des deux côtés de l’équation.
Étape 5.3.3.2.2
Écrivez comme une fraction avec un dénominateur commun.
Étape 5.3.3.2.3
Associez les numérateurs sur le dénominateur commun.
Étape 5.3.3.2.4
Soustrayez de .
Étape 5.3.4
Résolvez le système d’équations.
Étape 5.3.5
Indiquez toutes les solutions.
Étape 5.4
Remplacez chacun des coefficients de fractions partielles dans par les valeurs trouvées pour et .
Étape 5.5
Simplifiez
Étape 5.5.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 5.5.2
Multipliez par .
Étape 5.5.3
Multipliez le numérateur par la réciproque du dénominateur.
Étape 5.5.4
Multipliez par .
Étape 6
Séparez l’intégrale unique en plusieurs intégrales.
Étape 7
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 8
L’intégrale de par rapport à est .
Étape 9
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 10
Étape 10.1
Laissez . Déterminez .
Étape 10.1.1
Différenciez .
Étape 10.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 10.1.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 10.1.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 10.1.5
Additionnez et .
Étape 10.2
Réécrivez le problème en utilisant et .
Étape 11
L’intégrale de par rapport à est .
Étape 12
Simplifiez
Étape 13
Remplacez toutes les occurrences de par .