Calcul infinitésimal Exemples

Trouver les points tournants f(x) = cube root of x-1
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Utilisez pour réécrire comme .
Étape 1.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.2.3
Remplacez toutes les occurrences de par .
Étape 1.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.4
Associez et .
Étape 1.5
Associez les numérateurs sur le dénominateur commun.
Étape 1.6
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.6.1
Multipliez par .
Étape 1.6.2
Soustrayez de .
Étape 1.7
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 1.7.1
Placez le signe moins devant la fraction.
Étape 1.7.2
Associez et .
Étape 1.7.3
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 1.8
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.9
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.10
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.11
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 1.11.1
Additionnez et .
Étape 1.11.2
Multipliez par .
Étape 2
Définissez la dérivée première égale à et résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez le numérateur égal à zéro.
Étape 2.2
Comme , il n’y a aucune solution.
Aucune solution
Aucune solution
Étape 3
Comme il n’y a pas de valeur de qui rende la dérivée première égale à , il n’y a aucun changement de sens.
Aucun changement de sens
Étape 4