Calcul infinitésimal Exemples

Encontre a Derivada de Second f(x)=1/4x^4+1/4+1/3x^3
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.2.3
Associez et .
Étape 1.2.4
Associez et .
Étape 1.2.5
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.5.1
Annulez le facteur commun.
Étape 1.2.5.2
Divisez par .
Étape 1.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.4
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.4.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.4.3
Associez et .
Étape 1.4.4
Associez et .
Étape 1.4.5
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.5.1
Annulez le facteur commun.
Étape 1.4.5.2
Divisez par .
Étape 1.5
Additionnez et .
Étape 2
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3
La dérivée seconde de par rapport à est .