Calcul infinitésimal Exemples

Déterminer la concavité 3/20x^5-2x^4+8x^3
Étape 1
Écrivez comme une fonction.
Étape 2
Find the values where the second derivative is equal to .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.1.1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.1.1.2.3
Associez et .
Étape 2.1.1.2.4
Multipliez par .
Étape 2.1.1.2.5
Associez et .
Étape 2.1.1.2.6
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1.2.6.1
Factorisez à partir de .
Étape 2.1.1.2.6.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1.2.6.2.1
Factorisez à partir de .
Étape 2.1.1.2.6.2.2
Annulez le facteur commun.
Étape 2.1.1.2.6.2.3
Réécrivez l’expression.
Étape 2.1.1.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.1.1.3.3
Multipliez par .
Étape 2.1.1.4
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.1.4.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.1.1.4.3
Multipliez par .
Étape 2.1.2
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.1.2.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.2.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.1.2.2.3
Associez et .
Étape 2.1.2.2.4
Multipliez par .
Étape 2.1.2.2.5
Associez et .
Étape 2.1.2.2.6
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.2.6.1
Factorisez à partir de .
Étape 2.1.2.2.6.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.2.6.2.1
Factorisez à partir de .
Étape 2.1.2.2.6.2.2
Annulez le facteur commun.
Étape 2.1.2.2.6.2.3
Réécrivez l’expression.
Étape 2.1.2.2.6.2.4
Divisez par .
Étape 2.1.2.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.2.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.1.2.3.3
Multipliez par .
Étape 2.1.2.4
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.2.4.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.1.2.4.3
Multipliez par .
Étape 2.1.3
La dérivée seconde de par rapport à est .
Étape 2.2
Définissez la dérivée seconde égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Définissez la dérivée seconde égale à .
Étape 2.2.2
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1.1
Factorisez à partir de .
Étape 2.2.2.1.2
Factorisez à partir de .
Étape 2.2.2.1.3
Factorisez à partir de .
Étape 2.2.2.1.4
Factorisez à partir de .
Étape 2.2.2.1.5
Factorisez à partir de .
Étape 2.2.2.2
Factorisez en utilisant la règle du carré parfait.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.2.1
Réécrivez comme .
Étape 2.2.2.2.2
Vérifiez que le terme central est le double du produit des nombres élevés au carré dans le premier terme et le troisième terme.
Étape 2.2.2.2.3
Réécrivez le polynôme.
Étape 2.2.2.2.4
Factorisez en utilisant la règle trinomiale du carré parfait , où et .
Étape 2.2.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.2.4
Définissez égal à .
Étape 2.2.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.5.1
Définissez égal à .
Étape 2.2.5.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.5.2.1
Définissez le égal à .
Étape 2.2.5.2.2
Ajoutez aux deux côtés de l’équation.
Étape 2.2.6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 4
Créez des intervalles autour des valeurs où la dérivée seconde est nulle ou indéfinie.
Étape 5
Remplacez tout nombre du premier intervalle dans la dérivée seconde et évaluez afin de déterminer la concavité.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Remplacez la variable par dans l’expression.
Étape 5.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1
Élevez à la puissance .
Étape 5.2.1.2
Multipliez par .
Étape 5.2.1.3
Élevez à la puissance .
Étape 5.2.1.4
Multipliez par .
Étape 5.2.1.5
Multipliez par .
Étape 5.2.2
Simplifiez en soustrayant des nombres.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.1
Soustrayez de .
Étape 5.2.2.2
Soustrayez de .
Étape 5.2.3
La réponse finale est .
Étape 5.3
Le graphe est concave vers le bas sur l’intervalle car est négatif.
Concave vers le bas sur car est négatif
Concave vers le bas sur car est négatif
Étape 6
Remplacez tout nombre du premier intervalle dans la dérivée seconde et évaluez afin de déterminer la concavité.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.1
Élevez à la puissance .
Étape 6.2.1.2
Multipliez par .
Étape 6.2.1.3
Élevez à la puissance .
Étape 6.2.1.4
Multipliez par .
Étape 6.2.1.5
Multipliez par .
Étape 6.2.2
Simplifiez en ajoutant et en soustrayant.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.2.1
Soustrayez de .
Étape 6.2.2.2
Additionnez et .
Étape 6.2.3
La réponse finale est .
Étape 6.3
Le graphe est concave vers le haut sur l’intervalle car est positif.
Concave vers le haut sur car est positif
Concave vers le haut sur car est positif
Étape 7
Remplacez tout nombre du premier intervalle dans la dérivée seconde et évaluez afin de déterminer la concavité.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1.1
Élevez à la puissance .
Étape 7.2.1.2
Multipliez par .
Étape 7.2.1.3
Élevez à la puissance .
Étape 7.2.1.4
Multipliez par .
Étape 7.2.1.5
Multipliez par .
Étape 7.2.2
Simplifiez en ajoutant et en soustrayant.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.2.1
Soustrayez de .
Étape 7.2.2.2
Additionnez et .
Étape 7.2.3
La réponse finale est .
Étape 7.3
Le graphe est concave vers le haut sur l’intervalle car est positif.
Concave vers le haut sur car est positif
Concave vers le haut sur car est positif
Étape 8
Le graphe est concave vers le bas lorsque la dérivée seconde est négative et concave vers le haut lorsque la dérivée seconde est positive.
Concave vers le bas sur car est négatif
Concave vers le haut sur car est positif
Concave vers le haut sur car est positif
Étape 9