Calcul infinitésimal Exemples

Évaluer l''intégrale intégrale de 2 racine cubique de sin(2x)cos(2x) par rapport à x
Étape 1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Différenciez .
Étape 2.1.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.1.2.2
La dérivée de par rapport à est .
Étape 2.1.2.3
Remplacez toutes les occurrences de par .
Étape 2.1.3
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.1.3.3
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.3.3.1
Multipliez par .
Étape 2.1.3.3.2
Déplacez à gauche de .
Étape 2.2
Réécrivez le problème en utilisant et .
Étape 3
Associez et .
Étape 4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 5
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Associez et .
Étape 5.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.2.1
Annulez le facteur commun.
Étape 5.1.2.2
Réécrivez l’expression.
Étape 5.1.3
Multipliez par .
Étape 5.2
Utilisez pour réécrire comme .
Étape 6
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 7
Remplacez toutes les occurrences de par .