Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 1.2
Différenciez.
Étape 1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.5
Multipliez par .
Étape 1.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.3.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 1.3.3
Remplacez toutes les occurrences de par .
Étape 1.4
Différenciez.
Étape 1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.4.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.4.3
Simplifiez l’expression.
Étape 1.4.3.1
Multipliez par .
Étape 1.4.3.2
Déplacez à gauche de .
Étape 1.4.3.3
Réécrivez comme .
Étape 1.5
Simplifiez
Étape 1.5.1
Appliquez la propriété distributive.
Étape 1.5.2
Appliquez la propriété distributive.
Étape 1.5.3
Appliquez la propriété distributive.
Étape 1.5.4
Associez des termes.
Étape 1.5.4.1
Déplacez à gauche de .
Étape 1.5.4.2
Multipliez par .
Étape 1.5.4.3
Soustrayez de .
Étape 1.5.4.3.1
Déplacez .
Étape 1.5.4.3.2
Soustrayez de .
Étape 1.5.4.4
Additionnez et .
Étape 1.5.5
Remettez les termes dans l’ordre.
Étape 1.5.6
Remettez les facteurs dans l’ordre dans .
Étape 2
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 2.2.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.2.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2.3.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 2.2.3.3
Remplacez toutes les occurrences de par .
Étape 2.2.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.5
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.6
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.7
Multipliez par .
Étape 2.2.8
Déplacez à gauche de .
Étape 2.2.9
Réécrivez comme .
Étape 2.3
Évaluez .
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.3.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.3.2.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 2.3.2.3
Remplacez toutes les occurrences de par .
Étape 2.3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.5
Multipliez par .
Étape 2.3.6
Déplacez à gauche de .
Étape 2.3.7
Réécrivez comme .
Étape 2.3.8
Multipliez par .
Étape 2.4
Simplifiez
Étape 2.4.1
Appliquez la propriété distributive.
Étape 2.4.2
Associez des termes.
Étape 2.4.2.1
Multipliez par .
Étape 2.4.2.2
Multipliez par .
Étape 2.4.2.3
Multipliez par .
Étape 2.4.3
Remettez les termes dans l’ordre.
Étape 2.4.4
Remettez les facteurs dans l’ordre dans .
Étape 3
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 4
Étape 4.1
Déterminez la dérivée première.
Étape 4.1.1
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 4.1.2
Différenciez.
Étape 4.1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.1.2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.2.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.1.2.5
Multipliez par .
Étape 4.1.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 4.1.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 4.1.3.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 4.1.3.3
Remplacez toutes les occurrences de par .
Étape 4.1.4
Différenciez.
Étape 4.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.4.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.1.4.3
Simplifiez l’expression.
Étape 4.1.4.3.1
Multipliez par .
Étape 4.1.4.3.2
Déplacez à gauche de .
Étape 4.1.4.3.3
Réécrivez comme .
Étape 4.1.5
Simplifiez
Étape 4.1.5.1
Appliquez la propriété distributive.
Étape 4.1.5.2
Appliquez la propriété distributive.
Étape 4.1.5.3
Appliquez la propriété distributive.
Étape 4.1.5.4
Associez des termes.
Étape 4.1.5.4.1
Déplacez à gauche de .
Étape 4.1.5.4.2
Multipliez par .
Étape 4.1.5.4.3
Soustrayez de .
Étape 4.1.5.4.3.1
Déplacez .
Étape 4.1.5.4.3.2
Soustrayez de .
Étape 4.1.5.4.4
Additionnez et .
Étape 4.1.5.5
Remettez les termes dans l’ordre.
Étape 4.1.5.6
Remettez les facteurs dans l’ordre dans .
Étape 4.2
La dérivée première de par rapport à est .
Étape 5
Étape 5.1
Définissez la dérivée première égale à .
Étape 5.2
Factorisez à partir de .
Étape 5.2.1
Factorisez à partir de .
Étape 5.2.2
Factorisez à partir de .
Étape 5.2.3
Factorisez à partir de .
Étape 5.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 5.4
Définissez égal à et résolvez .
Étape 5.4.1
Définissez égal à .
Étape 5.4.2
Résolvez pour .
Étape 5.4.2.1
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 5.4.2.2
L’équation ne peut pas être résolue car est indéfini.
Indéfini
Étape 5.4.2.3
Il n’y a pas de solution pour
Aucune solution
Aucune solution
Aucune solution
Étape 5.5
Définissez égal à et résolvez .
Étape 5.5.1
Définissez égal à .
Étape 5.5.2
Résolvez pour .
Étape 5.5.2.1
Soustrayez des deux côtés de l’équation.
Étape 5.5.2.2
Divisez chaque terme dans par et simplifiez.
Étape 5.5.2.2.1
Divisez chaque terme dans par .
Étape 5.5.2.2.2
Simplifiez le côté gauche.
Étape 5.5.2.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 5.5.2.2.2.2
Divisez par .
Étape 5.5.2.2.3
Simplifiez le côté droit.
Étape 5.5.2.2.3.1
Divisez par .
Étape 5.5.2.3
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 5.5.2.4
La solution complète est le résultat des parties positive et négative de la solution.
Étape 5.5.2.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 5.5.2.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 5.5.2.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 5.6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 6
Étape 6.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 7
Points critiques à évaluer.
Étape 8
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 9
Étape 9.1
Réécrivez comme .
Étape 9.1.1
Utilisez pour réécrire comme .
Étape 9.1.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 9.1.3
Associez et .
Étape 9.1.4
Annulez le facteur commun de .
Étape 9.1.4.1
Annulez le facteur commun.
Étape 9.1.4.2
Réécrivez l’expression.
Étape 9.1.5
Évaluez l’exposant.
Étape 9.2
Simplifiez en ajoutant des termes.
Étape 9.2.1
Soustrayez de .
Étape 9.2.2
Additionnez et .
Étape 10
est un maximum local car la valeur de la dérivée seconde est négative. On parle de test de la dérivée seconde.
est un maximum local
Étape 11
Étape 11.1
Remplacez la variable par dans l’expression.
Étape 11.2
Simplifiez le résultat.
Étape 11.2.1
Réécrivez comme .
Étape 11.2.1.1
Utilisez pour réécrire comme .
Étape 11.2.1.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 11.2.1.3
Associez et .
Étape 11.2.1.4
Annulez le facteur commun de .
Étape 11.2.1.4.1
Annulez le facteur commun.
Étape 11.2.1.4.2
Réécrivez l’expression.
Étape 11.2.1.5
Évaluez l’exposant.
Étape 11.2.2
Simplifiez en multipliant.
Étape 11.2.2.1
Appliquez la propriété distributive.
Étape 11.2.2.2
Déplacez à gauche de .
Étape 11.2.3
Déplacez à gauche de .
Étape 11.2.4
La réponse finale est .
Étape 12
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 13
Étape 13.1
Simplifiez chaque terme.
Étape 13.1.1
Appliquez la règle de produit à .
Étape 13.1.2
Élevez à la puissance .
Étape 13.1.3
Multipliez par .
Étape 13.1.4
Réécrivez comme .
Étape 13.1.4.1
Utilisez pour réécrire comme .
Étape 13.1.4.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 13.1.4.3
Associez et .
Étape 13.1.4.4
Annulez le facteur commun de .
Étape 13.1.4.4.1
Annulez le facteur commun.
Étape 13.1.4.4.2
Réécrivez l’expression.
Étape 13.1.4.5
Évaluez l’exposant.
Étape 13.1.5
Multipliez .
Étape 13.1.5.1
Multipliez par .
Étape 13.1.5.2
Multipliez par .
Étape 13.1.6
Multipliez par .
Étape 13.1.7
Multipliez .
Étape 13.1.7.1
Multipliez par .
Étape 13.1.7.2
Multipliez par .
Étape 13.1.8
Multipliez .
Étape 13.1.8.1
Multipliez par .
Étape 13.1.8.2
Multipliez par .
Étape 13.2
Simplifiez en ajoutant des termes.
Étape 13.2.1
Soustrayez de .
Étape 13.2.2
Additionnez et .
Étape 14
est un minimum local car la valeur de la dérivée seconde est positive. On parle de test de la dérivée seconde.
est un minimum local
Étape 15
Étape 15.1
Remplacez la variable par dans l’expression.
Étape 15.2
Simplifiez le résultat.
Étape 15.2.1
Multipliez .
Étape 15.2.1.1
Multipliez par .
Étape 15.2.1.2
Multipliez par .
Étape 15.2.2
Simplifiez chaque terme.
Étape 15.2.2.1
Appliquez la règle de produit à .
Étape 15.2.2.2
Élevez à la puissance .
Étape 15.2.2.3
Multipliez par .
Étape 15.2.2.4
Réécrivez comme .
Étape 15.2.2.4.1
Utilisez pour réécrire comme .
Étape 15.2.2.4.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 15.2.2.4.3
Associez et .
Étape 15.2.2.4.4
Annulez le facteur commun de .
Étape 15.2.2.4.4.1
Annulez le facteur commun.
Étape 15.2.2.4.4.2
Réécrivez l’expression.
Étape 15.2.2.4.5
Évaluez l’exposant.
Étape 15.2.2.5
Multipliez par .
Étape 15.2.3
Simplifiez en multipliant.
Étape 15.2.3.1
Appliquez la propriété distributive.
Étape 15.2.3.2
Déplacez à gauche de .
Étape 15.2.4
La réponse finale est .
Étape 16
Ce sont les extrema locaux pour .
est un maximum local
est un minimum local
Étape 17