Entrer un problème...
Calcul infinitésimal Exemples
Let
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Différenciez en utilisant la règle du quotient qui indique que est où et .
Étape 1.1.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.1.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.1.2.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 1.1.2.3
Remplacez toutes les occurrences de par .
Étape 1.1.3
Différenciez.
Étape 1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.3.3
Simplifiez l’expression.
Étape 1.1.3.3.1
Multipliez par .
Étape 1.1.3.3.2
Déplacez à gauche de .
Étape 1.1.3.4
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.3.5
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.3.6
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.7
Simplifiez l’expression.
Étape 1.1.3.7.1
Additionnez et .
Étape 1.1.3.7.2
Multipliez par .
Étape 1.1.4
Simplifiez
Étape 1.1.4.1
Appliquez la propriété distributive.
Étape 1.1.4.2
Appliquez la propriété distributive.
Étape 1.1.4.3
Simplifiez le numérateur.
Étape 1.1.4.3.1
Multipliez par .
Étape 1.1.4.3.2
Soustrayez de .
Étape 1.1.4.4
Remettez les termes dans l’ordre.
Étape 1.1.4.5
Factorisez à partir de .
Étape 1.1.4.5.1
Factorisez à partir de .
Étape 1.1.4.5.2
Factorisez à partir de .
Étape 1.1.4.5.3
Factorisez à partir de .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Définissez le numérateur égal à zéro.
Étape 2.3
Résolvez l’équation pour .
Étape 2.3.1
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.3.2
Définissez égal à et résolvez .
Étape 2.3.2.1
Définissez égal à .
Étape 2.3.2.2
Résolvez pour .
Étape 2.3.2.2.1
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 2.3.2.2.2
L’équation ne peut pas être résolue car est indéfini.
Indéfini
Étape 2.3.2.2.3
Il n’y a pas de solution pour
Aucune solution
Aucune solution
Aucune solution
Étape 2.3.3
Définissez égal à et résolvez .
Étape 2.3.3.1
Définissez égal à .
Étape 2.3.3.2
Résolvez pour .
Étape 2.3.3.2.1
Ajoutez aux deux côtés de l’équation.
Étape 2.3.3.2.2
Divisez chaque terme dans par et simplifiez.
Étape 2.3.3.2.2.1
Divisez chaque terme dans par .
Étape 2.3.3.2.2.2
Simplifiez le côté gauche.
Étape 2.3.3.2.2.2.1
Annulez le facteur commun de .
Étape 2.3.3.2.2.2.1.1
Annulez le facteur commun.
Étape 2.3.3.2.2.2.1.2
Divisez par .
Étape 2.3.4
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3
Étape 3.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 3.2
Résolvez .
Étape 3.2.1
Définissez le égal à .
Étape 3.2.2
Ajoutez aux deux côtés de l’équation.
Étape 4
Étape 4.1
Évaluez sur .
Étape 4.1.1
Remplacez par .
Étape 4.1.2
Simplifiez
Étape 4.1.2.1
Annulez le facteur commun de .
Étape 4.1.2.1.1
Annulez le facteur commun.
Étape 4.1.2.1.2
Réécrivez l’expression.
Étape 4.1.2.2
Simplifiez le dénominateur.
Étape 4.1.2.2.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.1.2.2.2
Associez et .
Étape 4.1.2.2.3
Associez les numérateurs sur le dénominateur commun.
Étape 4.1.2.2.4
Simplifiez le numérateur.
Étape 4.1.2.2.4.1
Multipliez par .
Étape 4.1.2.2.4.2
Soustrayez de .
Étape 4.1.2.3
Multipliez le numérateur par la réciproque du dénominateur.
Étape 4.1.2.4
Déplacez à gauche de .
Étape 4.2
Évaluez sur .
Étape 4.2.1
Remplacez par .
Étape 4.2.2
Simplifiez
Étape 4.2.2.1
Soustrayez de .
Étape 4.2.2.2
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Indéfini
Indéfini
Étape 4.3
Indiquez tous les points.
Étape 5