Calcul infinitésimal Exemples

Évaluer l''intégrale intégrale de pi/4 à pi/2 de (1-cos(2t))sin(2t) par rapport à t
Étape 1
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Différenciez .
Étape 1.1.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.1.2.2
La dérivée de par rapport à est .
Étape 1.1.2.3
Remplacez toutes les occurrences de par .
Étape 1.1.3
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.2
Multipliez par .
Étape 1.1.3.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.3.4
Multipliez par .
Étape 1.2
Remplacez la limite inférieure pour dans .
Étape 1.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1.1
Factorisez à partir de .
Étape 1.3.1.2
Annulez le facteur commun.
Étape 1.3.1.3
Réécrivez l’expression.
Étape 1.3.2
La valeur exacte de est .
Étape 1.4
Remplacez la limite supérieure pour dans .
Étape 1.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1.1
Annulez le facteur commun.
Étape 1.5.1.2
Réécrivez l’expression.
Étape 1.5.2
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car le cosinus est négatif dans le deuxième quadrant.
Étape 1.5.3
La valeur exacte de est .
Étape 1.5.4
Multipliez par .
Étape 1.6
Les valeurs déterminées pour et seront utilisées pour évaluer l’intégrale définie.
Étape 1.7
Réécrivez le problème en utilisant , et les nouvelles limites d’intégration.
Étape 2
Placez le signe moins devant la fraction.
Étape 3
Multipliez .
Étape 4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Multipliez par .
Étape 4.2
Réécrivez comme .
Étape 4.3
Multipliez par .
Étape 4.4
Multipliez par .
Étape 4.5
Associez et .
Étape 5
Séparez l’intégrale unique en plusieurs intégrales.
Étape 6
Appliquez la règle de la constante.
Étape 7
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 8
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 9
Remplacez et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Évaluez sur et sur .
Étape 9.2
Évaluez sur et sur .
Étape 9.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 9.3.1
Multipliez par .
Étape 9.3.2
Multipliez par .
Étape 9.3.3
Multipliez par .
Étape 9.3.4
Additionnez et .
Étape 9.3.5
Élevez à la puissance .
Étape 9.3.6
Multipliez par .
Étape 9.3.7
L’élévation de à toute puissance positive produit .
Étape 9.3.8
Multipliez par .
Étape 9.3.9
Multipliez par .
Étape 9.3.10
Additionnez et .
Étape 9.3.11
Multipliez par .
Étape 9.3.12
Multipliez par .
Étape 9.3.13
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 9.3.14
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Appuyez ici pour voir plus d’étapes...
Étape 9.3.14.1
Multipliez par .
Étape 9.3.14.2
Multipliez par .
Étape 9.3.15
Associez les numérateurs sur le dénominateur commun.
Étape 9.3.16
Additionnez et .
Étape 10
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :