Calcul infinitésimal Exemples

Évaluer à l''aide de la règle de l''Hôpital limite lorsque x approche de 3 de (3 logarithme népérien de 4-x)/(x-3)
Étape 1
Évaluez la limite du numérateur et la limite du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 1.2
Évaluez la limite du numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Placez le terme hors de la limite car il est constant par rapport à .
Étape 1.2.2
Placez la limite à l’intérieur du logarithme.
Étape 1.2.3
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.2.4
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.2.5
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.5.1
Évaluez la limite de en insérant pour .
Étape 1.2.5.2
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.5.2.1
Soustrayez de .
Étape 1.2.5.2.2
Le logarithme naturel de est .
Étape 1.2.5.2.3
Multipliez par .
Étape 1.3
Évaluez la limite du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Évaluez la limite.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.3.1.2
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.3.2
Évaluez la limite de en insérant pour .
Étape 1.3.3
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.1
Multipliez par .
Étape 1.3.3.2
Soustrayez de .
Étape 1.3.3.3
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.3.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 3
Déterminez la dérivée du numérateur et du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Différenciez le numérateur et le dénominateur.
Étape 3.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.3.2
La dérivée de par rapport à est .
Étape 3.3.3
Remplacez toutes les occurrences de par .
Étape 3.4
Associez et .
Étape 3.5
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.6
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.7
Additionnez et .
Étape 3.8
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.9
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.10
Multipliez par .
Étape 3.11
Associez et .
Étape 3.12
Multipliez par .
Étape 3.13
Placez le signe moins devant la fraction.
Étape 3.14
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.15
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.16
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.17
Additionnez et .
Étape 4
Multipliez le numérateur par la réciproque du dénominateur.
Étape 5
Multipliez par .
Étape 6
Placez le terme hors de la limite car il est constant par rapport à .
Étape 7
Placez le terme hors de la limite car il est constant par rapport à .
Étape 8
Divisez la limite en utilisant la règle du quotient des limites sur la limite lorsque approche de .
Étape 9
Évaluez la limite de qui est constante lorsque approche de .
Étape 10
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 11
Évaluez la limite de qui est constante lorsque approche de .
Étape 12
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 12.1
Évaluez la limite de en insérant pour .
Étape 12.2
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 12.2.1
Soustrayez de .
Étape 12.2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 12.2.2.1
Annulez le facteur commun.
Étape 12.2.2.2
Réécrivez l’expression.
Étape 12.2.3
Multipliez par .