Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Utilisez pour réécrire comme .
Étape 2
Étape 2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2
La dérivée de par rapport à est .
Étape 2.3
Remplacez toutes les occurrences de par .
Étape 3
Multipliez par la réciproque de la fraction pour diviser par .
Étape 4
Multipliez par .
Étape 5
Différenciez en utilisant la règle du quotient qui indique que est où et .
Étape 6
Étape 6.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 6.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 6.3
Remplacez toutes les occurrences de par .
Étape 7
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 8
Associez et .
Étape 9
Associez les numérateurs sur le dénominateur commun.
Étape 10
Étape 10.1
Multipliez par .
Étape 10.2
Soustrayez de .
Étape 11
Étape 11.1
Placez le signe moins devant la fraction.
Étape 11.2
Associez et .
Étape 11.3
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 11.4
Associez et .
Étape 12
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 13
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 14
Additionnez et .
Étape 15
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 16
Étape 16.1
Associez et .
Étape 16.2
Associez et .
Étape 17
Élevez à la puissance .
Étape 18
Élevez à la puissance .
Étape 19
Utilisez la règle de puissance pour associer des exposants.
Étape 20
Additionnez et .
Étape 21
Annulez le facteur commun.
Étape 22
Réécrivez l’expression.
Étape 23
Multipliez par .
Étape 24
Associez.
Étape 25
Appliquez la propriété distributive.
Étape 26
Étape 26.1
Annulez le facteur commun.
Étape 26.2
Réécrivez l’expression.
Étape 27
Étape 27.1
Déplacez .
Étape 27.2
Utilisez la règle de puissance pour associer des exposants.
Étape 27.3
Associez les numérateurs sur le dénominateur commun.
Étape 27.4
Additionnez et .
Étape 27.5
Divisez par .
Étape 28
Simplifiez .
Étape 29
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 30
Étape 30.1
Multipliez par .
Étape 30.2
Simplifiez l’expression.
Étape 30.2.1
Déplacez à gauche de .
Étape 30.2.2
Réécrivez comme .
Étape 30.3
Multipliez par .
Étape 31
Étape 31.1
Déplacez .
Étape 31.2
Utilisez la règle de puissance pour associer des exposants.
Étape 31.3
Associez les numérateurs sur le dénominateur commun.
Étape 31.4
Additionnez et .
Étape 31.5
Divisez par .
Étape 32
Simplifiez .
Étape 33
Étape 33.1
Factorisez à partir de .
Étape 33.2
Annulez le facteur commun.
Étape 33.3
Réécrivez l’expression.
Étape 34
Étape 34.1
Appliquez la propriété distributive.
Étape 34.2
Appliquez la propriété distributive.
Étape 34.3
Simplifiez le numérateur.
Étape 34.3.1
Associez les termes opposés dans .
Étape 34.3.1.1
Soustrayez de .
Étape 34.3.1.2
Soustrayez de .
Étape 34.3.2
Multipliez par .
Étape 34.4
Associez des termes.
Étape 34.4.1
Multipliez par en additionnant les exposants.
Étape 34.4.1.1
Multipliez par .
Étape 34.4.1.1.1
Élevez à la puissance .
Étape 34.4.1.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 34.4.1.2
Additionnez et .
Étape 34.4.2
Placez le signe moins devant la fraction.
Étape 34.5
Factorisez à partir de .
Étape 34.5.1
Factorisez à partir de .
Étape 34.5.2
Factorisez à partir de .
Étape 34.5.3
Factorisez à partir de .