Calcul infinitésimal Exemples

Évaluer l''intégrale intégrale de (2x+4)/(x^2+9) par rapport à x
Étape 1
Divisez la fraction en deux fractions.
Étape 2
Séparez l’intégrale unique en plusieurs intégrales.
Étape 3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Différenciez .
Étape 4.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.1.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.5
Additionnez et .
Étape 4.2
Réécrivez le problème en utilisant et .
Étape 5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Multipliez par .
Étape 5.2
Déplacez à gauche de .
Étape 6
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Associez et .
Étape 7.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Annulez le facteur commun.
Étape 7.2.2
Réécrivez l’expression.
Étape 7.3
Multipliez par .
Étape 8
L’intégrale de par rapport à est .
Étape 9
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 10
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Remettez dans l’ordre et .
Étape 10.2
Réécrivez comme .
Étape 11
L’intégrale de par rapport à est .
Étape 12
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 12.1
Associez et .
Étape 12.2
Simplifiez
Étape 13
Remplacez toutes les occurrences de par .
Étape 14
Remettez les termes dans l’ordre.