Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.2.2
La dérivée de par rapport à est .
Étape 1.2.3
Remplacez toutes les occurrences de par .
Étape 1.3
Différenciez.
Étape 1.3.1
Associez et .
Étape 1.3.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.3
Simplifiez les termes.
Étape 1.3.3.1
Associez et .
Étape 1.3.3.2
Annulez le facteur commun de .
Étape 1.3.3.2.1
Annulez le facteur commun.
Étape 1.3.3.2.2
Divisez par .
Étape 1.3.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.5
Multipliez par .
Étape 2
Étape 2.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.1.3
Remplacez toutes les occurrences de par .
Étape 2.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2.2
La dérivée de par rapport à est .
Étape 2.2.3
Remplacez toutes les occurrences de par .
Étape 2.3
Élevez à la puissance .
Étape 2.4
Élevez à la puissance .
Étape 2.5
Utilisez la règle de puissance pour associer des exposants.
Étape 2.6
Additionnez et .
Étape 2.7
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.8
Multipliez par .
Étape 2.9
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.10
Multipliez par .
Étape 3
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 4
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 5
Étape 5.1
Réécrivez comme .
Étape 5.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 5.3
Plus ou moins est .
Étape 6
La plage de la sécante est et . Comme n’est pas sur cette plage, il n’y a pas de solution.
Aucune solution
Étape 7
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 8
Étape 8.1
Évaluez .
Étape 8.2
Élevez à la puissance .
Étape 8.3
Multipliez par .
Étape 8.4
Évaluez .
Étape 8.5
Multipliez par .
Étape 9
est un minimum local car la valeur de la dérivée seconde est positive. On parle de test de la dérivée seconde.
est un minimum local
Étape 10
Ce sont les extrema locaux pour .
est un minimum local
Étape 11