Calcul infinitésimal Exemples

Encontre dy/dx x^4+sin(y)=x^3y^2
Étape 1
Différenciez les deux côtés de l’équation.
Étape 2
Différenciez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.1.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2.1.2
La dérivée de par rapport à est .
Étape 2.2.1.3
Remplacez toutes les occurrences de par .
Étape 2.2.2
Réécrivez comme .
Étape 3
Différenciez le côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 3.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.2.3
Remplacez toutes les occurrences de par .
Étape 3.3
Déplacez à gauche de .
Étape 3.4
Réécrivez comme .
Étape 3.5
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.6
Remettez dans l’ordre.
Appuyez ici pour voir plus d’étapes...
Étape 3.6.1
Déplacez à gauche de .
Étape 3.6.2
Remettez les termes dans l’ordre.
Étape 4
Réformez l’équation en définissant le côté gauche égal au côté droit.
Étape 5
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Remettez les facteurs dans l’ordre dans .
Étape 5.2
Soustrayez des deux côtés de l’équation.
Étape 5.3
Soustrayez des deux côtés de l’équation.
Étape 5.4
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 5.4.1
Factorisez à partir de .
Étape 5.4.2
Factorisez à partir de .
Étape 5.4.3
Factorisez à partir de .
Étape 5.5
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.5.1
Divisez chaque terme dans par .
Étape 5.5.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.5.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.5.2.1.1
Annulez le facteur commun.
Étape 5.5.2.1.2
Divisez par .
Étape 5.5.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.5.3.1
Placez le signe moins devant la fraction.
Étape 5.5.3.2
Associez les numérateurs sur le dénominateur commun.
Étape 5.5.3.3
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 5.5.3.3.1
Factorisez à partir de .
Étape 5.5.3.3.2
Factorisez à partir de .
Étape 5.5.3.3.3
Factorisez à partir de .
Étape 6
Remplacez par.