Calcul infinitésimal Exemples

Encontre dy/dx y=x^(2^x)
Étape 1
Différenciez les deux côtés de l’équation.
Étape 2
La dérivée de par rapport à est .
Étape 3
Différenciez le côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Utilisez les propriétés des logarithmes pour simplifier la différenciation.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Réécrivez comme .
Étape 3.1.2
Développez en déplaçant hors du logarithme.
Étape 3.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.2.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 3.2.3
Remplacez toutes les occurrences de par .
Étape 3.3
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 3.4
La dérivée de par rapport à est .
Étape 3.5
Associez et .
Étape 3.6
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 3.7
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.7.1
Appliquez la propriété distributive.
Étape 3.7.2
Associez et .
Étape 3.7.3
Remettez les termes dans l’ordre.
Étape 4
Réformez l’équation en définissant le côté gauche égal au côté droit.
Étape 5
Remplacez par.