Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Différenciez les deux côtés de l’équation.
Étape 2
La dérivée de par rapport à est .
Étape 3
Étape 3.1
Réduisez l’expression en annulant les facteurs communs.
Étape 3.1.1
Annulez le facteur commun à et .
Étape 3.1.1.1
Factorisez à partir de .
Étape 3.1.1.2
Annulez les facteurs communs.
Étape 3.1.1.2.1
Factorisez à partir de .
Étape 3.1.1.2.2
Factorisez à partir de .
Étape 3.1.1.2.3
Factorisez à partir de .
Étape 3.1.1.2.4
Annulez le facteur commun.
Étape 3.1.1.2.5
Réécrivez l’expression.
Étape 3.1.2
Réécrivez comme .
Étape 3.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 3.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.2.3
Remplacez toutes les occurrences de par .
Étape 3.3
Différenciez.
Étape 3.3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.4
Simplifiez l’expression.
Étape 3.3.4.1
Additionnez et .
Étape 3.3.4.2
Multipliez par .
Étape 3.4
Simplifiez
Étape 3.4.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 3.4.2
Associez des termes.
Étape 3.4.2.1
Associez et .
Étape 3.4.2.2
Placez le signe moins devant la fraction.
Étape 3.4.2.3
Associez et .
Étape 3.4.2.4
Déplacez à gauche de .
Étape 4
Réformez l’équation en définissant le côté gauche égal au côté droit.
Étape 5
Remplacez par.