Calcul infinitésimal Exemples

Trouver la primitive x racine carrée de 1-x
Étape 1
Écrivez comme une fonction.
Étape 2
La fonction peut être trouvée en déterminant l’intégrale infinie de la dérivée .
Étape 3
Définissez l’intégrale à résoudre.
Étape 4
Intégrez par parties en utilisant la formule , où et .
Étape 5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Associez et .
Étape 5.2
Associez et .
Étape 5.3
Déplacez à gauche de .
Étape 6
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Multipliez par .
Étape 7.2
Multipliez par .
Étape 8
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 8.1.1
Différenciez .
Étape 8.1.2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 8.1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 8.1.2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 8.1.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 8.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 8.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 8.1.3.3
Multipliez par .
Étape 8.1.4
Soustrayez de .
Étape 8.2
Réécrivez le problème en utilisant et .
Étape 9
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 10
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 11
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Associez et .
Étape 11.2
Réécrivez comme .
Étape 11.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 11.3.1
Associez et .
Étape 11.3.2
Associez et .
Étape 11.3.3
Déplacez à gauche de .
Étape 11.3.4
Déplacez à gauche de .
Étape 11.3.5
Associez et .
Étape 11.3.6
Multipliez par .
Étape 11.3.7
Multipliez par .
Étape 11.3.8
Multipliez par .
Étape 11.3.9
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 11.3.10
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Appuyez ici pour voir plus d’étapes...
Étape 11.3.10.1
Multipliez par .
Étape 11.3.10.2
Multipliez par .
Étape 11.3.11
Associez les numérateurs sur le dénominateur commun.
Étape 11.3.12
Multipliez par .
Étape 12
Remplacez toutes les occurrences de par .
Étape 13
Remettez les termes dans l’ordre.
Étape 14
La réponse est la dérivée première de la fonction .