Calcul infinitésimal Exemples

Évaluer l''intégrale intégrale de 100 à infinity de x/( racine carrée de 1+x^2) par rapport à x
Étape 1
Écrivez l’intégrale comme une limite lorsque approche de .
Étape 2
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Différenciez .
Étape 2.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.1.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.1.5
Additionnez et .
Étape 2.2
Remplacez la limite inférieure pour dans .
Étape 2.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Élevez à la puissance .
Étape 2.3.2
Additionnez et .
Étape 2.4
Remplacez la limite supérieure pour dans .
Étape 2.5
Les valeurs déterminées pour et seront utilisées pour évaluer l’intégrale définie.
Étape 2.6
Réécrivez le problème en utilisant , et les nouvelles limites d’intégration.
Étape 3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Multipliez par .
Étape 3.2
Déplacez à gauche de .
Étape 4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 5
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Utilisez pour réécrire comme .
Étape 5.2
Retirez du dénominateur en l’élevant à la puissance .
Étape 5.3
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 5.3.2
Associez et .
Étape 5.3.3
Placez le signe moins devant la fraction.
Étape 6
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 7
Associez et .
Étape 8
Remplacez et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Évaluez sur et sur .
Étape 8.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1
Factorisez à partir de .
Étape 8.2.2
Factorisez à partir de .
Étape 8.2.3
Factorisez à partir de .
Étape 8.2.4
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.4.1
Factorisez à partir de .
Étape 8.2.4.2
Annulez le facteur commun.
Étape 8.2.4.3
Réécrivez l’expression.
Étape 8.2.4.4
Divisez par .
Étape 9
Évaluez la limite.
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 9.2
Réécrivez comme .
Étape 9.3
Lorsque approche de pour les radicaux, la valeur passe à .
Étape 9.4
Évaluez la limite de qui est constante lorsque approche de .
Étape 9.5
L’infini plus ou moins un nombre est l’infini.