Calcul infinitésimal Exemples

Évaluer la limite limite lorsque x approche de -1 de (1/(4x+3)+1)/(4x+4)
Étape 1
Associez des termes.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Écrivez comme une fraction avec un dénominateur commun.
Étape 1.2
Associez les numérateurs sur le dénominateur commun.
Étape 1.3
Additionnez et .
Étape 2
Évaluez la limite.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Simplifiez l’argument limite.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 2.1.2
Multipliez par .
Étape 2.1.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.3.1
Annulez le facteur commun.
Étape 2.1.3.2
Réécrivez l’expression.
Étape 2.2
Divisez la limite en utilisant la règle du quotient des limites sur la limite lorsque approche de .
Étape 2.3
Évaluez la limite de qui est constante lorsque approche de .
Étape 2.4
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 2.5
Placez le terme hors de la limite car il est constant par rapport à .
Étape 2.6
Évaluez la limite de qui est constante lorsque approche de .
Étape 3
Évaluez la limite de en insérant pour .
Étape 4
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Multipliez par .
Étape 4.1.2
Additionnez et .
Étape 4.2
Divisez par .