Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2
Étape 2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3
Remplacez toutes les occurrences de par .
Étape 3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4
Associez et .
Étape 5
Associez les numérateurs sur le dénominateur commun.
Étape 6
Étape 6.1
Multipliez par .
Étape 6.2
Soustrayez de .
Étape 7
Étape 7.1
Placez le signe moins devant la fraction.
Étape 7.2
Associez et .
Étape 7.3
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 8
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 9
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 10
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 11
Étape 11.1
Additionnez et .
Étape 11.2
Multipliez par .