Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Placez le terme hors de la limite car il est constant par rapport à .
Étape 2
Étape 2.1
Évaluez la limite du numérateur et la limite du dénominateur.
Étape 2.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 2.1.2
Évaluez la limite du numérateur.
Étape 2.1.2.1
Déplacez la limite dans la fonction trigonométrique car le sinus est continu.
Étape 2.1.2.2
Évaluez la limite de en insérant pour .
Étape 2.1.2.3
La valeur exacte de est .
Étape 2.1.3
Évaluez la limite du dénominateur.
Étape 2.1.3.1
Déplacez la limite dans la fonction trigonométrique car la tangente est continue.
Étape 2.1.3.2
Évaluez la limite de en insérant pour .
Étape 2.1.3.3
La valeur exacte de est .
Étape 2.1.3.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 2.1.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 2.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 2.3
Déterminez la dérivée du numérateur et du dénominateur.
Étape 2.3.1
Différenciez le numérateur et le dénominateur.
Étape 2.3.2
La dérivée de par rapport à est .
Étape 2.3.3
La dérivée de par rapport à est .
Étape 3
Étape 3.1
Divisez la limite en utilisant la règle du quotient des limites sur la limite lorsque approche de .
Étape 3.2
Déplacez la limite dans la fonction trigonométrique car le cosinus est continu.
Étape 3.3
Déplacez l’exposant de hors de la limite en utilisant la règle des puissances limites.
Étape 3.4
Déplacez la limite dans la fonction trigonométrique car la sécante est continue.
Étape 4
Étape 4.1
Évaluez la limite de en insérant pour .
Étape 4.2
Évaluez la limite de en insérant pour .
Étape 5
Étape 5.1
La valeur exacte de est .
Étape 5.2
Simplifiez le dénominateur.
Étape 5.2.1
La valeur exacte de est .
Étape 5.2.2
Un à n’importe quelle puissance est égal à un.
Étape 5.3
Annulez le facteur commun de .
Étape 5.3.1
Annulez le facteur commun.
Étape 5.3.2
Réécrivez l’expression.
Étape 5.4
Multipliez par .