Entrer un problème...
Calcul infinitésimal Exemples
Let
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Différenciez en utilisant la règle du quotient qui indique que est où et .
Étape 1.1.2
Différenciez.
Étape 1.1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.4
Simplifiez l’expression.
Étape 1.1.2.4.1
Additionnez et .
Étape 1.1.2.4.2
Déplacez à gauche de .
Étape 1.1.2.5
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2.6
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.7
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.8
Simplifiez l’expression.
Étape 1.1.2.8.1
Additionnez et .
Étape 1.1.2.8.2
Multipliez par .
Étape 1.1.3
Simplifiez
Étape 1.1.3.1
Appliquez la propriété distributive.
Étape 1.1.3.2
Appliquez la propriété distributive.
Étape 1.1.3.3
Appliquez la propriété distributive.
Étape 1.1.3.4
Simplifiez le numérateur.
Étape 1.1.3.4.1
Simplifiez chaque terme.
Étape 1.1.3.4.1.1
Multipliez par en additionnant les exposants.
Étape 1.1.3.4.1.1.1
Déplacez .
Étape 1.1.3.4.1.1.2
Multipliez par .
Étape 1.1.3.4.1.2
Multipliez par .
Étape 1.1.3.4.1.3
Multipliez par .
Étape 1.1.3.4.2
Soustrayez de .
Étape 1.1.3.5
Factorisez à l’aide de la méthode AC.
Étape 1.1.3.5.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 1.1.3.5.2
Écrivez la forme factorisée avec ces entiers.
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Définissez le numérateur égal à zéro.
Étape 2.3
Résolvez l’équation pour .
Étape 2.3.1
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.3.2
Définissez égal à et résolvez .
Étape 2.3.2.1
Définissez égal à .
Étape 2.3.2.2
Soustrayez des deux côtés de l’équation.
Étape 2.3.3
Définissez égal à et résolvez .
Étape 2.3.3.1
Définissez égal à .
Étape 2.3.3.2
Soustrayez des deux côtés de l’équation.
Étape 2.3.4
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3
Étape 3.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 3.2
Résolvez .
Étape 3.2.1
Définissez le égal à .
Étape 3.2.2
Soustrayez des deux côtés de l’équation.
Étape 4
Étape 4.1
Évaluez sur .
Étape 4.1.1
Remplacez par .
Étape 4.1.2
Simplifiez
Étape 4.1.2.1
Simplifiez le numérateur.
Étape 4.1.2.1.1
Élevez à la puissance .
Étape 4.1.2.1.2
Soustrayez de .
Étape 4.1.2.2
Simplifiez l’expression.
Étape 4.1.2.2.1
Additionnez et .
Étape 4.1.2.2.2
Divisez par .
Étape 4.2
Évaluez sur .
Étape 4.2.1
Remplacez par .
Étape 4.2.2
Simplifiez
Étape 4.2.2.1
Simplifiez le numérateur.
Étape 4.2.2.1.1
Élevez à la puissance .
Étape 4.2.2.1.2
Soustrayez de .
Étape 4.2.2.2
Simplifiez l’expression.
Étape 4.2.2.2.1
Additionnez et .
Étape 4.2.2.2.2
Divisez par .
Étape 4.3
Évaluez sur .
Étape 4.3.1
Remplacez par .
Étape 4.3.2
Simplifiez
Étape 4.3.2.1
Additionnez et .
Étape 4.3.2.2
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Indéfini
Indéfini
Étape 4.4
Indiquez tous les points.
Étape 5