Calcul infinitésimal Exemples

Encontre dy/dx cos(2x+3y^3)=3y^2
Étape 1
Différenciez les deux côtés de l’équation.
Étape 2
Différenciez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.1.2
La dérivée de par rapport à est .
Étape 2.1.3
Remplacez toutes les occurrences de par .
Étape 2.2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.4
Multipliez par .
Étape 2.2.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.3
Remplacez toutes les occurrences de par .
Étape 2.4
Multipliez par .
Étape 2.5
Réécrivez comme .
Étape 3
Différenciez le côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.2.3
Remplacez toutes les occurrences de par .
Étape 3.3
Multipliez par .
Étape 3.4
Réécrivez comme .
Étape 4
Réformez l’équation en définissant le côté gauche égal au côté droit.
Étape 5
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1.1
Réécrivez.
Étape 5.1.1.2
Simplifiez en ajoutant des zéros.
Étape 5.1.1.3
Appliquez la propriété distributive.
Étape 5.1.1.4
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1.4.1
Multipliez par .
Étape 5.1.1.4.2
Multipliez par .
Étape 5.1.1.4.3
Remettez les facteurs dans l’ordre dans .
Étape 5.2
Soustrayez des deux côtés de l’équation.
Étape 5.3
Ajoutez aux deux côtés de l’équation.
Étape 5.4
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 5.4.1
Factorisez à partir de .
Étape 5.4.2
Factorisez à partir de .
Étape 5.4.3
Factorisez à partir de .
Étape 5.5
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.5.1
Divisez chaque terme dans par .
Étape 5.5.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.5.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.5.2.1.1
Annulez le facteur commun.
Étape 5.5.2.1.2
Réécrivez l’expression.
Étape 5.5.2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.5.2.2.1
Annulez le facteur commun.
Étape 5.5.2.2.2
Réécrivez l’expression.
Étape 5.5.2.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.5.2.3.1
Annulez le facteur commun.
Étape 5.5.2.3.2
Divisez par .
Étape 5.5.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.5.3.1
Factorisez à partir de .
Étape 5.5.3.2
Réécrivez comme .
Étape 5.5.3.3
Factorisez à partir de .
Étape 5.5.3.4
Réécrivez les nombres négatifs.
Appuyez ici pour voir plus d’étapes...
Étape 5.5.3.4.1
Réécrivez comme .
Étape 5.5.3.4.2
Placez le signe moins devant la fraction.
Étape 5.5.3.4.3
Remettez les facteurs dans l’ordre dans .
Étape 6
Remplacez par.