Calcul infinitésimal Exemples

Évaluer l''intégrale intégrale de ( racine carrée de x-x^-3)/(x^2) par rapport à x
Étape 1
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 1.1.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.1.3
Associez les numérateurs sur le dénominateur commun.
Étape 1.2
Multipliez le numérateur par la réciproque du dénominateur.
Étape 1.3
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Multipliez par .
Étape 1.3.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.1
Utilisez la règle de puissance pour associer des exposants.
Étape 1.3.2.2
Additionnez et .
Étape 2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Utilisez pour réécrire comme .
Étape 2.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.2.3
Associez et .
Étape 2.2.4
Associez les numérateurs sur le dénominateur commun.
Étape 2.2.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.5.1
Multipliez par .
Étape 2.2.5.2
Additionnez et .
Étape 3
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Retirez du dénominateur en l’élevant à la puissance .
Étape 3.2
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.2.2
Multipliez par .
Étape 4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Appliquez la propriété distributive.
Étape 4.2
Utilisez la règle de puissance pour associer des exposants.
Étape 4.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.4
Associez et .
Étape 4.5
Associez les numérateurs sur le dénominateur commun.
Étape 4.6
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.6.1
Multipliez par .
Étape 4.6.2
Soustrayez de .
Étape 4.7
Remettez dans l’ordre et .
Étape 5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Réécrivez comme .
Étape 5.2
Placez le signe moins devant la fraction.
Étape 6
Séparez l’intégrale unique en plusieurs intégrales.
Étape 7
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 8
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 9
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Associez et .
Étape 9.2
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 10
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 11
Simplifiez