Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Écrivez comme une fonction.
Étape 2
Étape 2.1
Déterminez la dérivée première.
Étape 2.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.1.2
Évaluez .
Étape 2.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.1.2.3
Associez et .
Étape 2.1.2.4
Associez et .
Étape 2.1.2.5
Annulez le facteur commun de .
Étape 2.1.2.5.1
Annulez le facteur commun.
Étape 2.1.2.5.2
Divisez par .
Étape 2.1.3
Évaluez .
Étape 2.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.1.3.3
Multipliez par .
Étape 2.1.4
Évaluez .
Étape 2.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.4.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.1.4.3
Associez et .
Étape 2.1.4.4
Multipliez par .
Étape 2.1.4.5
Associez et .
Étape 2.1.4.6
Annulez le facteur commun à et .
Étape 2.1.4.6.1
Factorisez à partir de .
Étape 2.1.4.6.2
Annulez les facteurs communs.
Étape 2.1.4.6.2.1
Factorisez à partir de .
Étape 2.1.4.6.2.2
Annulez le facteur commun.
Étape 2.1.4.6.2.3
Réécrivez l’expression.
Étape 2.1.4.6.2.4
Divisez par .
Étape 2.2
Déterminez la dérivée seconde.
Étape 2.2.1
Différenciez.
Étape 2.2.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.2
Évaluez .
Étape 2.2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.2.3
Multipliez par .
Étape 2.2.3
Évaluez .
Étape 2.2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.3.3
Multipliez par .
Étape 2.3
La dérivée seconde de par rapport à est .
Étape 3
Étape 3.1
Définissez la dérivée seconde égale à .
Étape 3.2
Factorisez le côté gauche de l’équation.
Étape 3.2.1
Factorisez à partir de .
Étape 3.2.1.1
Factorisez à partir de .
Étape 3.2.1.2
Factorisez à partir de .
Étape 3.2.1.3
Factorisez à partir de .
Étape 3.2.1.4
Factorisez à partir de .
Étape 3.2.1.5
Factorisez à partir de .
Étape 3.2.2
Factorisez en utilisant la règle du carré parfait.
Étape 3.2.2.1
Réécrivez comme .
Étape 3.2.2.2
Vérifiez que le terme central est le double du produit des nombres élevés au carré dans le premier terme et le troisième terme.
Étape 3.2.2.3
Réécrivez le polynôme.
Étape 3.2.2.4
Factorisez en utilisant la règle trinomiale du carré parfait , où et .
Étape 3.3
Divisez chaque terme dans par et simplifiez.
Étape 3.3.1
Divisez chaque terme dans par .
Étape 3.3.2
Simplifiez le côté gauche.
Étape 3.3.2.1
Annulez le facteur commun de .
Étape 3.3.2.1.1
Annulez le facteur commun.
Étape 3.3.2.1.2
Divisez par .
Étape 3.3.3
Simplifiez le côté droit.
Étape 3.3.3.1
Divisez par .
Étape 3.4
Définissez le égal à .
Étape 3.5
Soustrayez des deux côtés de l’équation.
Étape 4
Étape 4.1
Remplacez dans pour déterminer la valeur de .
Étape 4.1.1
Remplacez la variable par dans l’expression.
Étape 4.1.2
Simplifiez le résultat.
Étape 4.1.2.1
Simplifiez chaque terme.
Étape 4.1.2.1.1
Élevez à la puissance .
Étape 4.1.2.1.2
Associez et .
Étape 4.1.2.1.3
Élevez à la puissance .
Étape 4.1.2.1.4
Multipliez par .
Étape 4.1.2.1.5
Élevez à la puissance .
Étape 4.1.2.1.6
Multipliez .
Étape 4.1.2.1.6.1
Associez et .
Étape 4.1.2.1.6.2
Multipliez par .
Étape 4.1.2.2
Déterminez le dénominateur commun.
Étape 4.1.2.2.1
Écrivez comme une fraction avec le dénominateur .
Étape 4.1.2.2.2
Multipliez par .
Étape 4.1.2.2.3
Multipliez par .
Étape 4.1.2.2.4
Multipliez par .
Étape 4.1.2.2.5
Multipliez par .
Étape 4.1.2.2.6
Multipliez par .
Étape 4.1.2.3
Associez les numérateurs sur le dénominateur commun.
Étape 4.1.2.4
Simplifiez chaque terme.
Étape 4.1.2.4.1
Multipliez par .
Étape 4.1.2.4.2
Multipliez par .
Étape 4.1.2.5
Simplifiez en ajoutant et en soustrayant.
Étape 4.1.2.5.1
Soustrayez de .
Étape 4.1.2.5.2
Additionnez et .
Étape 4.1.2.6
La réponse finale est .
Étape 4.2
Le point trouvé en remplaçant dans est . Ce point peut être un point d’inflexion.
Étape 5
Divisez en intervalles autour des points qui pourraient potentiellement être des points d’inflexion.
Étape 6
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Étape 6.2.1
Simplifiez chaque terme.
Étape 6.2.1.1
Élevez à la puissance .
Étape 6.2.1.2
Multipliez par .
Étape 6.2.1.3
Multipliez par .
Étape 6.2.2
Simplifiez en ajoutant et en soustrayant.
Étape 6.2.2.1
Soustrayez de .
Étape 6.2.2.2
Additionnez et .
Étape 6.2.3
La réponse finale est .
Étape 6.3
Sur , la dérivée seconde est . Comme elle est positive, la dérivée seconde augmente sur l’intervalle .
Augmente sur depuis
Augmente sur depuis
Étape 7
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Étape 7.2.1
Simplifiez chaque terme.
Étape 7.2.1.1
Élevez à la puissance .
Étape 7.2.1.2
Multipliez par .
Étape 7.2.1.3
Multipliez par .
Étape 7.2.2
Simplifiez en ajoutant et en soustrayant.
Étape 7.2.2.1
Soustrayez de .
Étape 7.2.2.2
Additionnez et .
Étape 7.2.3
La réponse finale est .
Étape 7.3
Sur , la dérivée seconde est . Comme elle est positive, la dérivée seconde augmente sur l’intervalle .
Augmente sur depuis
Augmente sur depuis
Étape 8
Un point d’inflexion est un point sur une courbe sur lequel la concavité passe du signe plus au signe moins ou du signe moins au signe plus. Aucun point du graphe ne respecte ces exigences.
Aucun point d’inflexion