Calcul infinitésimal Exemples

Trouver la valeur maximale/minimale y = square root of x+4-1
Étape 1
Déterminez la dérivée première de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Utilisez pour réécrire comme .
Étape 1.2.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.2.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.2.2.3
Remplacez toutes les occurrences de par .
Étape 1.2.3
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.2.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.6
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.2.7
Associez et .
Étape 1.2.8
Associez les numérateurs sur le dénominateur commun.
Étape 1.2.9
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.9.1
Multipliez par .
Étape 1.2.9.2
Soustrayez de .
Étape 1.2.10
Placez le signe moins devant la fraction.
Étape 1.2.11
Additionnez et .
Étape 1.2.12
Associez et .
Étape 1.2.13
Multipliez par .
Étape 1.2.14
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 1.3
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.2
Additionnez et .
Étape 2
Déterminez la dérivée seconde de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Différenciez en utilisant la règle multiple constante.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.2
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.1
Réécrivez comme .
Étape 2.1.2.2
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.1.2.2.2
Associez et .
Étape 2.1.2.2.3
Placez le signe moins devant la fraction.
Étape 2.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.3
Remplacez toutes les occurrences de par .
Étape 2.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.4
Associez et .
Étape 2.5
Associez les numérateurs sur le dénominateur commun.
Étape 2.6
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1
Multipliez par .
Étape 2.6.2
Soustrayez de .
Étape 2.7
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 2.7.1
Placez le signe moins devant la fraction.
Étape 2.7.2
Associez et .
Étape 2.7.3
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 2.7.4
Multipliez par .
Étape 2.7.5
Multipliez par .
Étape 2.8
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.9
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.10
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.11
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 2.11.1
Additionnez et .
Étape 2.11.2
Multipliez par .
Étape 3
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 4
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1
Utilisez pour réécrire comme .
Étape 4.1.2.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 4.1.2.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.1.2.2.3
Remplacez toutes les occurrences de par .
Étape 4.1.2.3
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.1.2.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.1.2.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.2.6
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.1.2.7
Associez et .
Étape 4.1.2.8
Associez les numérateurs sur le dénominateur commun.
Étape 4.1.2.9
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.9.1
Multipliez par .
Étape 4.1.2.9.2
Soustrayez de .
Étape 4.1.2.10
Placez le signe moins devant la fraction.
Étape 4.1.2.11
Additionnez et .
Étape 4.1.2.12
Associez et .
Étape 4.1.2.13
Multipliez par .
Étape 4.1.2.14
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 4.1.3
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.3.2
Additionnez et .
Étape 4.2
La dérivée première de par rapport à est .
Étape 5
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Définissez la dérivée première égale à .
Étape 5.2
Définissez le numérateur égal à zéro.
Étape 5.3
Comme , il n’y a aucune solution.
Aucune solution
Aucune solution
Étape 6
Déterminez les valeurs où la dérivée est indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Convertissez des expressions avec exposants fractionnaires en radicaux.
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1
Appliquez la règle pour réécrire l’élévation à la puissance comme un radical.
Étape 6.1.2
Toute valeur élevée à est la base elle-même.
Étape 6.2
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 6.3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.3.1
Pour retirer le radical du côté gauche de l’équation, élevez au carré les deux côtés de l’équation.
Étape 6.3.2
Simplifiez chaque côté de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.1
Utilisez pour réécrire comme .
Étape 6.3.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.2.1.1
Appliquez la règle de produit à .
Étape 6.3.2.2.1.2
Élevez à la puissance .
Étape 6.3.2.2.1.3
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.2.1.3.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 6.3.2.2.1.3.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.2.1.3.2.1
Annulez le facteur commun.
Étape 6.3.2.2.1.3.2.2
Réécrivez l’expression.
Étape 6.3.2.2.1.4
Simplifiez
Étape 6.3.2.2.1.5
Appliquez la propriété distributive.
Étape 6.3.2.2.1.6
Multipliez par .
Étape 6.3.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.3.1
L’élévation de à toute puissance positive produit .
Étape 6.3.3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.3.3.1
Soustrayez des deux côtés de l’équation.
Étape 6.3.3.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.3.2.1
Divisez chaque terme dans par .
Étape 6.3.3.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.3.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.3.3.2.2.1.1
Annulez le facteur commun.
Étape 6.3.3.2.2.1.2
Divisez par .
Étape 6.3.3.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.3.2.3.1
Divisez par .
Étape 6.4
Définissez le radicande dans inférieur à pour déterminer où l’expression est indéfinie.
Étape 6.5
Soustrayez des deux côtés de l’inégalité.
Étape 6.6
L’équation est indéfinie là où le dénominateur est égal à , l’argument d’une racine carrée est inférieur à ou l’argument d’un logarithme est inférieur ou égal à .
Étape 7
Points critiques à évaluer.
Étape 8
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 9
Évaluez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 9.1.1
Additionnez et .
Étape 9.1.2
Réécrivez comme .
Étape 9.1.3
Appliquez la règle de puissance et multipliez les exposants, .
Étape 9.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 9.2.1
Annulez le facteur commun.
Étape 9.2.2
Réécrivez l’expression.
Étape 9.3
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 9.3.1
L’élévation de à toute puissance positive produit .
Étape 9.3.2
Multipliez par .
Étape 9.3.3
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 9.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Indéfini
Étape 10
Comme le test de la dérivée première a échoué, il n’y a aucun extremum local.
Aucun extremum local
Étape 11