Calcul infinitésimal Exemples

Trouver la primitive f(x)=4xe^(2x)
Étape 1
La fonction peut être trouvée en déterminant l’intégrale infinie de la dérivée .
Étape 2
Définissez l’intégrale à résoudre.
Étape 3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4
Intégrez par parties en utilisant la formule , où et .
Étape 5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Associez et .
Étape 5.2
Associez et .
Étape 5.3
Associez et .
Étape 6
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 7.1.1
Différenciez .
Étape 7.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 7.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 7.1.4
Multipliez par .
Étape 7.2
Réécrivez le problème en utilisant et .
Étape 8
Associez et .
Étape 9
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 10
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Multipliez par .
Étape 10.2
Multipliez par .
Étape 11
L’intégrale de par rapport à est .
Étape 12
Réécrivez comme .
Étape 13
Remplacez toutes les occurrences de par .
Étape 14
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 14.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 14.1.1
Associez et .
Étape 14.1.2
Associez et .
Étape 14.1.3
Associez et .
Étape 14.2
Appliquez la propriété distributive.
Étape 14.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 14.3.1
Factorisez à partir de .
Étape 14.3.2
Annulez le facteur commun.
Étape 14.3.3
Réécrivez l’expression.
Étape 14.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 14.4.1
Placez le signe négatif initial dans dans le numérateur.
Étape 14.4.2
Annulez le facteur commun.
Étape 14.4.3
Réécrivez l’expression.
Étape 15
La réponse est la dérivée première de la fonction .