Calcul infinitésimal Exemples

Évaluer l''intégrale intégrale de x(x^2+7)(1/3) par rapport à x
Étape 1
Associez et .
Étape 2
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Différenciez .
Étape 2.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.1.4
Multipliez par .
Étape 2.2
Réécrivez le problème en utilisant et .
Étape 3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Factorisez à partir de .
Étape 3.2
Appliquez la règle de produit à .
Étape 3.3
Élevez à la puissance .
Étape 4
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Différenciez .
Étape 4.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.1.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.1.3.3
Multipliez par .
Étape 4.1.4
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.4.2
Additionnez et .
Étape 4.2
Réécrivez le problème en utilisant et .
Étape 5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Associez et .
Étape 5.2
Associez et .
Étape 5.3
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Factorisez à partir de .
Étape 5.3.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.2.1
Factorisez à partir de .
Étape 5.3.2.2
Annulez le facteur commun.
Étape 5.3.2.3
Réécrivez l’expression.
Étape 6
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 8
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Réécrivez comme .
Étape 8.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1
Multipliez par .
Étape 8.2.2
Multipliez par .
Étape 9
Remplacez à nouveau pour chaque variable de substitution de l’intégration.
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Remplacez toutes les occurrences de par .
Étape 9.2
Remplacez toutes les occurrences de par .
Étape 10
Remettez les termes dans l’ordre.