Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Associez et .
Étape 2
Étape 2.1
Laissez . Déterminez .
Étape 2.1.1
Différenciez .
Étape 2.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.1.4
Multipliez par .
Étape 2.2
Réécrivez le problème en utilisant et .
Étape 3
Étape 3.1
Factorisez à partir de .
Étape 3.2
Appliquez la règle de produit à .
Étape 3.3
Élevez à la puissance .
Étape 4
Étape 4.1
Laissez . Déterminez .
Étape 4.1.1
Différenciez .
Étape 4.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.1.3
Évaluez .
Étape 4.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.1.3.3
Multipliez par .
Étape 4.1.4
Différenciez en utilisant la règle de la constante.
Étape 4.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.4.2
Additionnez et .
Étape 4.2
Réécrivez le problème en utilisant et .
Étape 5
Étape 5.1
Associez et .
Étape 5.2
Associez et .
Étape 5.3
Annulez le facteur commun à et .
Étape 5.3.1
Factorisez à partir de .
Étape 5.3.2
Annulez les facteurs communs.
Étape 5.3.2.1
Factorisez à partir de .
Étape 5.3.2.2
Annulez le facteur commun.
Étape 5.3.2.3
Réécrivez l’expression.
Étape 6
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 8
Étape 8.1
Réécrivez comme .
Étape 8.2
Simplifiez
Étape 8.2.1
Multipliez par .
Étape 8.2.2
Multipliez par .
Étape 9
Étape 9.1
Remplacez toutes les occurrences de par .
Étape 9.2
Remplacez toutes les occurrences de par .
Étape 10
Remettez les termes dans l’ordre.