Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Laissez . Déterminez .
Étape 1.1.1
Différenciez .
Étape 1.1.2
Différenciez.
Étape 1.1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3
Évaluez .
Étape 1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.3.3
Multipliez par .
Étape 1.1.4
Soustrayez de .
Étape 1.2
Réécrivez le problème en utilisant et .
Étape 2
Étape 2.1
Placez le signe moins devant la fraction.
Étape 2.2
Associez et .
Étape 3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 5
Utilisez la formule de l’angle moitié pour réécrire en .
Étape 6
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7
Étape 7.1
Multipliez par .
Étape 7.2
Multipliez par .
Étape 8
Séparez l’intégrale unique en plusieurs intégrales.
Étape 9
Appliquez la règle de la constante.
Étape 10
Étape 10.1
Laissez . Déterminez .
Étape 10.1.1
Différenciez .
Étape 10.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 10.1.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 10.1.4
Multipliez par .
Étape 10.2
Réécrivez le problème en utilisant et .
Étape 11
Associez et .
Étape 12
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 13
L’intégrale de par rapport à est .
Étape 14
Simplifiez
Étape 15
Étape 15.1
Remplacez toutes les occurrences de par .
Étape 15.2
Remplacez toutes les occurrences de par .
Étape 15.3
Remplacez toutes les occurrences de par .