Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Évaluez la limite du numérateur et la limite du dénominateur.
Étape 1.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 1.1.2
Évaluez la limite du numérateur.
Étape 1.1.2.1
Évaluez la limite.
Étape 1.1.2.1.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.1.2.1.2
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.1.2.1.3
Placez la limite dans l’exposant.
Étape 1.1.2.2
Évaluez la limite de en insérant pour .
Étape 1.1.2.3
Simplifiez la réponse.
Étape 1.1.2.3.1
Simplifiez chaque terme.
Étape 1.1.2.3.1.1
Tout ce qui est élevé à la puissance est .
Étape 1.1.2.3.1.2
Multipliez par .
Étape 1.1.2.3.2
Soustrayez de .
Étape 1.1.3
Évaluez la limite du dénominateur.
Étape 1.1.3.1
Évaluez la limite.
Étape 1.1.3.1.1
Placez la limite à l’intérieur du logarithme.
Étape 1.1.3.1.2
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.1.3.1.3
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.1.3.1.4
Placez la limite dans l’exposant.
Étape 1.1.3.2
Évaluez la limite de en insérant pour .
Étape 1.1.3.3
Simplifiez la réponse.
Étape 1.1.3.3.1
Simplifiez chaque terme.
Étape 1.1.3.3.1.1
Tout ce qui est élevé à la puissance est .
Étape 1.1.3.3.1.2
Multipliez par .
Étape 1.1.3.3.2
Soustrayez de .
Étape 1.1.3.3.3
Le logarithme naturel de est .
Étape 1.1.3.3.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.1.3.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.1.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 1.3
Déterminez la dérivée du numérateur et du dénominateur.
Étape 1.3.1
Différenciez le numérateur et le dénominateur.
Étape 1.3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.4
Évaluez .
Étape 1.3.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.4.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 1.3.5
Soustrayez de .
Étape 1.3.6
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.3.6.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.3.6.2
La dérivée de par rapport à est .
Étape 1.3.6.3
Remplacez toutes les occurrences de par .
Étape 1.3.7
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.8
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.9
Additionnez et .
Étape 1.3.10
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.11
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 1.3.12
Associez et .
Étape 1.4
Multipliez le numérateur par la réciproque du dénominateur.
Étape 1.5
Combinez les facteurs.
Étape 1.5.1
Multipliez par .
Étape 1.5.2
Multipliez par .
Étape 1.5.3
Associez et .
Étape 1.6
Annulez le facteur commun de .
Étape 1.6.1
Annulez le facteur commun.
Étape 1.6.2
Divisez par .
Étape 2
Étape 2.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 2.2
Évaluez la limite de qui est constante lorsque approche de .
Étape 2.3
Placez la limite dans l’exposant.
Étape 3
Évaluez la limite de en insérant pour .
Étape 4
Étape 4.1
Simplifiez chaque terme.
Étape 4.1.1
Tout ce qui est élevé à la puissance est .
Étape 4.1.2
Multipliez par .
Étape 4.2
Soustrayez de .