Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Différenciez.
Étape 1.1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2
Évaluez .
Étape 1.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.2
Réécrivez comme .
Étape 1.1.2.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.4
Multipliez par .
Étape 1.1.3
Simplifiez
Étape 1.1.3.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 1.1.3.2
Associez des termes.
Étape 1.1.3.2.1
Associez et .
Étape 1.1.3.2.2
Placez le signe moins devant la fraction.
Étape 1.2
Déterminez la dérivée seconde.
Étape 1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2.2
Évaluez .
Étape 1.2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.2.3
Multipliez par .
Étape 1.2.3
Évaluez .
Étape 1.2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.3.2
Réécrivez comme .
Étape 1.2.3.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.2.3.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.2.3.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.3.3.3
Remplacez toutes les occurrences de par .
Étape 1.2.3.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.3.5
Multipliez les exposants dans .
Étape 1.2.3.5.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 1.2.3.5.2
Multipliez par .
Étape 1.2.3.6
Multipliez par .
Étape 1.2.3.7
Élevez à la puissance .
Étape 1.2.3.8
Utilisez la règle de puissance pour associer des exposants.
Étape 1.2.3.9
Soustrayez de .
Étape 1.2.3.10
Multipliez par .
Étape 1.2.4
Simplifiez
Étape 1.2.4.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 1.2.4.2
Associez et .
Étape 1.2.4.3
Remettez les termes dans l’ordre.
Étape 1.3
La dérivée seconde de par rapport à est .
Étape 2
Étape 2.1
Définissez la dérivée seconde égale à .
Étape 2.2
Soustrayez des deux côtés de l’équation.
Étape 2.3
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Étape 2.3.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 2.3.2
Le plus petit multiple commun de toute expression est l’expression.
Étape 2.4
Multiplier chaque terme dans par afin d’éliminer les fractions.
Étape 2.4.1
Multipliez chaque terme dans par .
Étape 2.4.2
Simplifiez le côté gauche.
Étape 2.4.2.1
Annulez le facteur commun de .
Étape 2.4.2.1.1
Annulez le facteur commun.
Étape 2.4.2.1.2
Réécrivez l’expression.
Étape 2.5
Résolvez l’équation.
Étape 2.5.1
Réécrivez l’équation comme .
Étape 2.5.2
Soustrayez des deux côtés de l’équation.
Étape 2.5.3
Factorisez le côté gauche de l’équation.
Étape 2.5.3.1
Factorisez à partir de .
Étape 2.5.3.1.1
Factorisez à partir de .
Étape 2.5.3.1.2
Factorisez à partir de .
Étape 2.5.3.1.3
Factorisez à partir de .
Étape 2.5.3.2
Réécrivez comme .
Étape 2.5.3.3
Les deux termes étant des cubes parfaits, factorisez à l’aide de la formule de la somme des cubes, où et .
Étape 2.5.3.4
Factorisez.
Étape 2.5.3.4.1
Simplifiez
Étape 2.5.3.4.1.1
Multipliez par .
Étape 2.5.3.4.1.2
Élevez à la puissance .
Étape 2.5.3.4.2
Supprimez les parenthèses inutiles.
Étape 2.5.4
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.5.5
Définissez égal à et résolvez .
Étape 2.5.5.1
Définissez égal à .
Étape 2.5.5.2
Soustrayez des deux côtés de l’équation.
Étape 2.5.6
Définissez égal à et résolvez .
Étape 2.5.6.1
Définissez égal à .
Étape 2.5.6.2
Résolvez pour .
Étape 2.5.6.2.1
Utilisez la formule quadratique pour déterminer les solutions.
Étape 2.5.6.2.2
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 2.5.6.2.3
Simplifiez
Étape 2.5.6.2.3.1
Simplifiez le numérateur.
Étape 2.5.6.2.3.1.1
Élevez à la puissance .
Étape 2.5.6.2.3.1.2
Multipliez .
Étape 2.5.6.2.3.1.2.1
Multipliez par .
Étape 2.5.6.2.3.1.2.2
Multipliez par .
Étape 2.5.6.2.3.1.3
Soustrayez de .
Étape 2.5.6.2.3.1.4
Réécrivez comme .
Étape 2.5.6.2.3.1.5
Réécrivez comme .
Étape 2.5.6.2.3.1.6
Réécrivez comme .
Étape 2.5.6.2.3.1.7
Réécrivez comme .
Étape 2.5.6.2.3.1.7.1
Factorisez à partir de .
Étape 2.5.6.2.3.1.7.2
Réécrivez comme .
Étape 2.5.6.2.3.1.8
Extrayez les termes de sous le radical.
Étape 2.5.6.2.3.1.9
Déplacez à gauche de .
Étape 2.5.6.2.3.2
Multipliez par .
Étape 2.5.6.2.3.3
Simplifiez .
Étape 2.5.6.2.4
Simplifiez l’expression pour résoudre la partie du .
Étape 2.5.6.2.4.1
Simplifiez le numérateur.
Étape 2.5.6.2.4.1.1
Élevez à la puissance .
Étape 2.5.6.2.4.1.2
Multipliez .
Étape 2.5.6.2.4.1.2.1
Multipliez par .
Étape 2.5.6.2.4.1.2.2
Multipliez par .
Étape 2.5.6.2.4.1.3
Soustrayez de .
Étape 2.5.6.2.4.1.4
Réécrivez comme .
Étape 2.5.6.2.4.1.5
Réécrivez comme .
Étape 2.5.6.2.4.1.6
Réécrivez comme .
Étape 2.5.6.2.4.1.7
Réécrivez comme .
Étape 2.5.6.2.4.1.7.1
Factorisez à partir de .
Étape 2.5.6.2.4.1.7.2
Réécrivez comme .
Étape 2.5.6.2.4.1.8
Extrayez les termes de sous le radical.
Étape 2.5.6.2.4.1.9
Déplacez à gauche de .
Étape 2.5.6.2.4.2
Multipliez par .
Étape 2.5.6.2.4.3
Simplifiez .
Étape 2.5.6.2.4.4
Remplacez le par .
Étape 2.5.6.2.5
Simplifiez l’expression pour résoudre la partie du .
Étape 2.5.6.2.5.1
Simplifiez le numérateur.
Étape 2.5.6.2.5.1.1
Élevez à la puissance .
Étape 2.5.6.2.5.1.2
Multipliez .
Étape 2.5.6.2.5.1.2.1
Multipliez par .
Étape 2.5.6.2.5.1.2.2
Multipliez par .
Étape 2.5.6.2.5.1.3
Soustrayez de .
Étape 2.5.6.2.5.1.4
Réécrivez comme .
Étape 2.5.6.2.5.1.5
Réécrivez comme .
Étape 2.5.6.2.5.1.6
Réécrivez comme .
Étape 2.5.6.2.5.1.7
Réécrivez comme .
Étape 2.5.6.2.5.1.7.1
Factorisez à partir de .
Étape 2.5.6.2.5.1.7.2
Réécrivez comme .
Étape 2.5.6.2.5.1.8
Extrayez les termes de sous le radical.
Étape 2.5.6.2.5.1.9
Déplacez à gauche de .
Étape 2.5.6.2.5.2
Multipliez par .
Étape 2.5.6.2.5.3
Simplifiez .
Étape 2.5.6.2.5.4
Remplacez le par .
Étape 2.5.6.2.6
La réponse finale est la combinaison des deux solutions.
Étape 2.5.7
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3
Étape 3.1
Remplacez dans pour déterminer la valeur de .
Étape 3.1.1
Remplacez la variable par dans l’expression.
Étape 3.1.2
Simplifiez le résultat.
Étape 3.1.2.1
Simplifiez chaque terme.
Étape 3.1.2.1.1
Élevez à la puissance .
Étape 3.1.2.1.2
Divisez par .
Étape 3.1.2.2
Soustrayez de .
Étape 3.1.2.3
La réponse finale est .
Étape 3.2
Le point trouvé en remplaçant dans est . Ce point peut être un point d’inflexion.
Étape 4
Divisez en intervalles autour des points qui pourraient potentiellement être des points d’inflexion.
Étape 5
Étape 5.1
Remplacez la variable par dans l’expression.
Étape 5.2
Simplifiez le résultat.
Étape 5.2.1
Simplifiez chaque terme.
Étape 5.2.1.1
Élevez à la puissance .
Étape 5.2.1.2
Divisez par .
Étape 5.2.2
Additionnez et .
Étape 5.2.3
La réponse finale est .
Étape 5.3
Sur , la dérivée seconde est . Comme elle est positive, la dérivée seconde augmente sur l’intervalle .
Augmente sur depuis
Augmente sur depuis
Étape 6
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Étape 6.2.1
Simplifiez chaque terme.
Étape 6.2.1.1
Élevez à la puissance .
Étape 6.2.1.2
Divisez par .
Étape 6.2.2
Additionnez et .
Étape 6.2.3
La réponse finale est .
Étape 6.3
Sur , la dérivée seconde est . Comme elle est négative, la dérivée seconde est décroissante sur l’intervalle
Diminue sur depuis
Diminue sur depuis
Étape 7
Un point d’inflexion est un point sur une courbe sur lequel la concavité passe du signe plus au signe moins ou du signe moins au signe plus. Dans ce cas, le point d’inflexion est .
Étape 8