Calcul infinitésimal Exemples

Évaluer l''intégrale intégrale de (x+3)/(4x+4) par rapport à x
Étape 1
Divisez par .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Définissez les polynômes à diviser. S’il n’y a pas de terme pour chaque exposant, insérez-en un avec une valeur de .
++
Étape 1.2
Divisez le terme du plus haut degré dans le dividende par le terme du plus haut degré dans le diviseur .
++
Étape 1.3
Multipliez le nouveau terme du quotient par le diviseur.
++
++
Étape 1.4
L’expression doit être soustraite du dividende, alors changez tous les signes dans
++
--
Étape 1.5
Après avoir changé les signes, ajoutez le dernier dividende du polynôme multiplié pour déterminer le nouveau dividende.
++
--
+
Étape 1.6
La réponse finale est le quotient plus le reste sur le diviseur.
Étape 2
Séparez l’intégrale unique en plusieurs intégrales.
Étape 3
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Factorisez à partir de .
Étape 3.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Factorisez à partir de .
Étape 3.2.2
Factorisez à partir de .
Étape 3.2.3
Factorisez à partir de .
Étape 3.2.4
Annulez le facteur commun.
Étape 3.2.5
Réécrivez l’expression.
Étape 4
Appliquez la règle de la constante.
Étape 5
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Différenciez .
Étape 5.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 5.1.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 5.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 5.1.3.3
Multipliez par .
Étape 5.1.4
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 5.1.4.2
Additionnez et .
Étape 5.2
Réécrivez le problème en utilisant et .
Étape 6
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Multipliez par .
Étape 6.2
Déplacez à gauche de .
Étape 7
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 8
L’intégrale de par rapport à est .
Étape 9
Simplifiez
Étape 10
Remplacez toutes les occurrences de par .