Calcul infinitésimal Exemples

Encontre dy/dx y=sin(6x)cos(x)^2
Étape 1
Différenciez les deux côtés de l’équation.
Étape 2
La dérivée de par rapport à est .
Étape 3
Différenciez le côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 3.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.2.3
Remplacez toutes les occurrences de par .
Étape 3.3
Déplacez à gauche de .
Étape 3.4
La dérivée de par rapport à est .
Étape 3.5
Multipliez par .
Étape 3.6
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.6.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.6.2
La dérivée de par rapport à est .
Étape 3.6.3
Remplacez toutes les occurrences de par .
Étape 3.7
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 3.7.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.7.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.7.3
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 3.7.3.1
Multipliez par .
Étape 3.7.3.2
Déplacez à gauche de .
Étape 3.7.3.3
Remettez les termes dans l’ordre.
Étape 4
Réformez l’équation en définissant le côté gauche égal au côté droit.
Étape 5
Remplacez par.