Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2
Évaluez .
Étape 1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.3
Associez et .
Étape 1.2.4
Associez et .
Étape 1.2.5
Annulez le facteur commun de .
Étape 1.2.5.1
Annulez le facteur commun.
Étape 1.2.5.2
Divisez par .
Étape 1.3
Évaluez .
Étape 1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.3
Multipliez par .
Étape 1.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.5
Évaluez .
Étape 1.5.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.5.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.5.3
Multipliez par .
Étape 1.5.4
Associez et .
Étape 1.5.5
Associez et .
Étape 1.5.6
Placez le signe moins devant la fraction.
Étape 1.6
Remettez les termes dans l’ordre.
Étape 2
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.3
Multipliez par .
Étape 2.2.4
Associez et .
Étape 2.2.5
Multipliez par .
Étape 2.2.6
Associez et .
Étape 2.2.7
Annulez le facteur commun à et .
Étape 2.2.7.1
Factorisez à partir de .
Étape 2.2.7.2
Annulez les facteurs communs.
Étape 2.2.7.2.1
Factorisez à partir de .
Étape 2.2.7.2.2
Annulez le facteur commun.
Étape 2.2.7.2.3
Réécrivez l’expression.
Étape 2.2.7.2.4
Divisez par .
Étape 2.3
Évaluez .
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.3
Multipliez par .
Étape 2.4
Différenciez.
Étape 2.4.1
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.4.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.4.3
Additionnez et .