Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2
Évaluez .
Étape 1.1.2.1
Utilisez pour réécrire comme .
Étape 1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.1.2.4
Associez et .
Étape 1.1.2.5
Associez les numérateurs sur le dénominateur commun.
Étape 1.1.2.6
Simplifiez le numérateur.
Étape 1.1.2.6.1
Multipliez par .
Étape 1.1.2.6.2
Soustrayez de .
Étape 1.1.2.7
Placez le signe moins devant la fraction.
Étape 1.1.3
Évaluez .
Étape 1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.3.3
Multipliez par .
Étape 1.1.4
Simplifiez
Étape 1.1.4.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 1.1.4.2
Multipliez par .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Soustrayez des deux côtés de l’équation.
Étape 2.3
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Étape 2.3.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 2.3.2
Le plus petit multiple commun de toute expression est l’expression.
Étape 2.4
Multiplier chaque terme dans par afin d’éliminer les fractions.
Étape 2.4.1
Multipliez chaque terme dans par .
Étape 2.4.2
Simplifiez le côté gauche.
Étape 2.4.2.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.4.2.2
Annulez le facteur commun de .
Étape 2.4.2.2.1
Annulez le facteur commun.
Étape 2.4.2.2.2
Réécrivez l’expression.
Étape 2.4.2.3
Annulez le facteur commun de .
Étape 2.4.2.3.1
Annulez le facteur commun.
Étape 2.4.2.3.2
Réécrivez l’expression.
Étape 2.4.3
Simplifiez le côté droit.
Étape 2.4.3.1
Multipliez par .
Étape 2.5
Résolvez l’équation.
Étape 2.5.1
Réécrivez l’équation comme .
Étape 2.5.2
Divisez chaque terme dans par et simplifiez.
Étape 2.5.2.1
Divisez chaque terme dans par .
Étape 2.5.2.2
Simplifiez le côté gauche.
Étape 2.5.2.2.1
Annulez le facteur commun.
Étape 2.5.2.2.2
Divisez par .
Étape 2.5.2.3
Simplifiez le côté droit.
Étape 2.5.2.3.1
Annulez le facteur commun à et .
Étape 2.5.2.3.1.1
Factorisez à partir de .
Étape 2.5.2.3.1.2
Annulez les facteurs communs.
Étape 2.5.2.3.1.2.1
Factorisez à partir de .
Étape 2.5.2.3.1.2.2
Annulez le facteur commun.
Étape 2.5.2.3.1.2.3
Réécrivez l’expression.
Étape 2.5.2.3.2
Placez le signe moins devant la fraction.
Étape 2.5.3
Élevez chaque côté de l’équation à la puissance pour éliminer l’exposant fractionnel du côté gauche.
Étape 2.5.4
Simplifiez l’exposant.
Étape 2.5.4.1
Simplifiez le côté gauche.
Étape 2.5.4.1.1
Simplifiez .
Étape 2.5.4.1.1.1
Multipliez les exposants dans .
Étape 2.5.4.1.1.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.5.4.1.1.1.2
Annulez le facteur commun de .
Étape 2.5.4.1.1.1.2.1
Annulez le facteur commun.
Étape 2.5.4.1.1.1.2.2
Réécrivez l’expression.
Étape 2.5.4.1.1.2
Simplifiez
Étape 2.5.4.2
Simplifiez le côté droit.
Étape 2.5.4.2.1
Simplifiez .
Étape 2.5.4.2.1.1
Utilisez la règle de puissance pour distribuer l’exposant.
Étape 2.5.4.2.1.1.1
Appliquez la règle de produit à .
Étape 2.5.4.2.1.1.2
Appliquez la règle de produit à .
Étape 2.5.4.2.1.2
Élevez à la puissance .
Étape 2.5.4.2.1.3
Un à n’importe quelle puissance est égal à un.
Étape 2.5.4.2.1.4
Élevez à la puissance .
Étape 3
Étape 3.1
Convertissez des expressions avec exposants fractionnaires en radicaux.
Étape 3.1.1
Appliquez la règle pour réécrire l’élévation à la puissance comme un radical.
Étape 3.1.2
Toute valeur élevée à est la base elle-même.
Étape 3.2
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 3.3
Résolvez .
Étape 3.3.1
Pour retirer le radical du côté gauche de l’équation, élevez au cube les deux côtés de l’équation.
Étape 3.3.2
Simplifiez chaque côté de l’équation.
Étape 3.3.2.1
Utilisez pour réécrire comme .
Étape 3.3.2.2
Simplifiez le côté gauche.
Étape 3.3.2.2.1
Simplifiez .
Étape 3.3.2.2.1.1
Appliquez la règle de produit à .
Étape 3.3.2.2.1.2
Élevez à la puissance .
Étape 3.3.2.2.1.3
Multipliez les exposants dans .
Étape 3.3.2.2.1.3.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.3.2.2.1.3.2
Annulez le facteur commun de .
Étape 3.3.2.2.1.3.2.1
Annulez le facteur commun.
Étape 3.3.2.2.1.3.2.2
Réécrivez l’expression.
Étape 3.3.2.2.1.4
Simplifiez
Étape 3.3.2.3
Simplifiez le côté droit.
Étape 3.3.2.3.1
L’élévation de à toute puissance positive produit .
Étape 3.3.3
Divisez chaque terme dans par et simplifiez.
Étape 3.3.3.1
Divisez chaque terme dans par .
Étape 3.3.3.2
Simplifiez le côté gauche.
Étape 3.3.3.2.1
Annulez le facteur commun de .
Étape 3.3.3.2.1.1
Annulez le facteur commun.
Étape 3.3.3.2.1.2
Divisez par .
Étape 3.3.3.3
Simplifiez le côté droit.
Étape 3.3.3.3.1
Divisez par .
Étape 4
Étape 4.1
Évaluez sur .
Étape 4.1.1
Remplacez par .
Étape 4.1.2
Simplifiez
Étape 4.1.2.1
Simplifiez chaque terme.
Étape 4.1.2.1.1
Appliquez la règle de produit à .
Étape 4.1.2.1.2
Élevez à la puissance .
Étape 4.1.2.1.3
Appliquez la règle de produit à .
Étape 4.1.2.1.4
Un à n’importe quelle puissance est égal à un.
Étape 4.1.2.1.5
Élevez à la puissance .
Étape 4.1.2.1.6
Multipliez par .
Étape 4.1.2.1.7
Réécrivez comme .
Étape 4.1.2.1.8
Toute racine de est .
Étape 4.1.2.1.9
Simplifiez le dénominateur.
Étape 4.1.2.1.9.1
Réécrivez comme .
Étape 4.1.2.1.9.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels.
Étape 4.1.2.1.10
Multipliez .
Étape 4.1.2.1.10.1
Multipliez par .
Étape 4.1.2.1.10.2
Associez et .
Étape 4.1.2.1.11
Placez le signe moins devant la fraction.
Étape 4.1.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.1.2.3
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Étape 4.1.2.3.1
Multipliez par .
Étape 4.1.2.3.2
Multipliez par .
Étape 4.1.2.4
Associez les numérateurs sur le dénominateur commun.
Étape 4.1.2.5
Soustrayez de .
Étape 4.2
Évaluez sur .
Étape 4.2.1
Remplacez par .
Étape 4.2.2
Simplifiez
Étape 4.2.2.1
Simplifiez chaque terme.
Étape 4.2.2.1.1
L’élévation de à toute puissance positive produit .
Étape 4.2.2.1.2
Réécrivez comme .
Étape 4.2.2.1.3
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels.
Étape 4.2.2.1.4
Multipliez par .
Étape 4.2.2.2
Additionnez et .
Étape 4.3
Indiquez tous les points.
Étape 5