Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
La fonction peut être trouvée en déterminant l’intégrale infinie de la dérivée .
Étape 2
Définissez l’intégrale à résoudre.
Étape 3
Séparez l’intégrale unique en plusieurs intégrales.
Étape 4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 5
Étape 5.1
Retirez du dénominateur en l’élevant à la puissance .
Étape 5.2
Multipliez les exposants dans .
Étape 5.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 5.2.2
Multipliez par .
Étape 6
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 7
Étape 7.1
Associez et .
Étape 7.2
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 8
Appliquez la règle de la constante.
Étape 9
Étape 9.1
Simplifiez
Étape 9.2
Placez le signe moins devant la fraction.
Étape 10
La réponse est la dérivée première de la fonction .