Calcul infinitésimal Exemples

Encontre dy/dx y^3=x^3+1
Étape 1
Différenciez les deux côtés de l’équation.
Étape 2
Différenciez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.1.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.1.3
Remplacez toutes les occurrences de par .
Étape 2.2
Réécrivez comme .
Étape 3
Différenciez le côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.4
Additionnez et .
Étape 4
Réformez l’équation en définissant le côté gauche égal au côté droit.
Étape 5
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Divisez chaque terme dans par .
Étape 5.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1
Annulez le facteur commun.
Étape 5.2.1.2
Réécrivez l’expression.
Étape 5.2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.1
Annulez le facteur commun.
Étape 5.2.2.2
Divisez par .
Étape 5.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1.1
Annulez le facteur commun.
Étape 5.3.1.2
Réécrivez l’expression.
Étape 6
Remplacez par.