Calcul infinitésimal Exemples

Trouver la primitive f(x)=5sin(x/5)+cos(2x)
Étape 1
La fonction peut être trouvée en déterminant l’intégrale infinie de la dérivée .
Étape 2
Définissez l’intégrale à résoudre.
Étape 3
Séparez l’intégrale unique en plusieurs intégrales.
Étape 4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 5
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Différenciez .
Étape 5.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 5.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 5.1.4
Multipliez par .
Étape 5.2
Réécrivez le problème en utilisant et .
Étape 6
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Multipliez par la réciproque de la fraction pour diviser par .
Étape 6.2
Multipliez par .
Étape 6.3
Déplacez à gauche de .
Étape 7
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 8
Multipliez par .
Étape 9
L’intégrale de par rapport à est .
Étape 10
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 10.1.1
Différenciez .
Étape 10.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 10.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 10.1.4
Multipliez par .
Étape 10.2
Réécrivez le problème en utilisant et .
Étape 11
Associez et .
Étape 12
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 13
L’intégrale de par rapport à est .
Étape 14
Simplifiez
Étape 15
Remplacez à nouveau pour chaque variable de substitution de l’intégration.
Appuyez ici pour voir plus d’étapes...
Étape 15.1
Remplacez toutes les occurrences de par .
Étape 15.2
Remplacez toutes les occurrences de par .
Étape 16
Remettez les termes dans l’ordre.
Étape 17
La réponse est la dérivée première de la fonction .