Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 1.2
Évaluez la limite du numérateur.
Étape 1.2.1
Évaluez la limite.
Étape 1.2.1.1
Placez le terme hors de la limite car il est constant par rapport à .
Étape 1.2.1.2
Déplacez la limite dans la fonction trigonométrique car le sinus est continu.
Étape 1.2.1.3
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.2.1.4
Placez le terme hors de la limite car il est constant par rapport à .
Étape 1.2.1.5
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.2.2
Évaluez la limite de en insérant pour .
Étape 1.2.3
Simplifiez la réponse.
Étape 1.2.3.1
Multipliez par .
Étape 1.2.3.2
Additionnez et .
Étape 1.2.3.3
La valeur exacte de est .
Étape 1.2.3.4
Multipliez par .
Étape 1.3
Évaluez la limite du dénominateur.
Étape 1.3.1
Évaluez la limite.
Étape 1.3.1.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.3.1.2
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.3.2
Évaluez la limite de en insérant pour .
Étape 1.3.3
Soustrayez de .
Étape 1.3.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 3
Étape 3.1
Différenciez le numérateur et le dénominateur.
Étape 3.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 3.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.3.2
La dérivée de par rapport à est .
Étape 3.3.3
Remplacez toutes les occurrences de par .
Étape 3.4
Supprimez les parenthèses.
Étape 3.5
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.6
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.7
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.8
Multipliez par .
Étape 3.9
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.10
Additionnez et .
Étape 3.11
Multipliez par .
Étape 3.12
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.13
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.14
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.15
Additionnez et .
Étape 4
Étape 4.1
Divisez par .
Étape 4.2
Placez le terme hors de la limite car il est constant par rapport à .
Étape 4.3
Déplacez la limite dans la fonction trigonométrique car le cosinus est continu.
Étape 4.4
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 4.5
Placez le terme hors de la limite car il est constant par rapport à .
Étape 4.6
Évaluez la limite de qui est constante lorsque approche de .
Étape 5
Évaluez la limite de en insérant pour .
Étape 6
Étape 6.1
Multipliez par .
Étape 6.2
Additionnez et .
Étape 6.3
La valeur exacte de est .
Étape 6.4
Multipliez par .