Calcul infinitésimal Exemples

Encontre a Derivada de Third f(x)=3/4x^-2+1/2x^4-x^3
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.2.3
Associez et .
Étape 1.2.4
Multipliez par .
Étape 1.2.5
Associez et .
Étape 1.2.6
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 1.2.7
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.7.1
Factorisez à partir de .
Étape 1.2.7.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.7.2.1
Factorisez à partir de .
Étape 1.2.7.2.2
Annulez le facteur commun.
Étape 1.2.7.2.3
Réécrivez l’expression.
Étape 1.2.8
Placez le signe moins devant la fraction.
Étape 1.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3.3
Associez et .
Étape 1.3.4
Associez et .
Étape 1.3.5
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.5.1
Factorisez à partir de .
Étape 1.3.5.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.5.2.1
Factorisez à partir de .
Étape 1.3.5.2.2
Annulez le facteur commun.
Étape 1.3.5.2.3
Réécrivez l’expression.
Étape 1.3.5.2.4
Divisez par .
Étape 1.4
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.4.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.4.3
Multipliez par .
Étape 1.5
Remettez les termes dans l’ordre.
Étape 2
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.3
Multipliez par .
Étape 2.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.3
Multipliez par .
Étape 2.4
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.4.2
Réécrivez comme .
Étape 2.4.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.4.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.4.3.3
Remplacez toutes les occurrences de par .
Étape 2.4.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.4.5
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.5.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.4.5.2
Multipliez par .
Étape 2.4.6
Multipliez par .
Étape 2.4.7
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.7.1
Déplacez .
Étape 2.4.7.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.4.7.3
Soustrayez de .
Étape 2.4.8
Multipliez par .
Étape 2.4.9
Associez et .
Étape 2.4.10
Multipliez par .
Étape 2.4.11
Associez et .
Étape 2.4.12
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 3
Déterminez la dérivée troisième.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.2.3
Multipliez par .
Étape 3.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.3.3
Multipliez par .
Étape 3.4
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.4.2
Réécrivez comme .
Étape 3.4.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.4.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.4.3.3
Remplacez toutes les occurrences de par .
Étape 3.4.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.4.5
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.5.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.4.5.2
Multipliez par .
Étape 3.4.6
Multipliez par .
Étape 3.4.7
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.7.1
Déplacez .
Étape 3.4.7.2
Utilisez la règle de puissance pour associer des exposants.
Étape 3.4.7.3
Soustrayez de .
Étape 3.4.8
Associez et .
Étape 3.4.9
Multipliez par .
Étape 3.4.10
Associez et .
Étape 3.4.11
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 3.4.12
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.12.1
Factorisez à partir de .
Étape 3.4.12.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.12.2.1
Factorisez à partir de .
Étape 3.4.12.2.2
Annulez le facteur commun.
Étape 3.4.12.2.3
Réécrivez l’expression.
Étape 3.4.13
Placez le signe moins devant la fraction.
Étape 3.5
Remettez les termes dans l’ordre.
Étape 4
La dérivée troisième de par rapport à est .