Calcul infinitésimal Exemples

Trouver les points d''inflexion 1/10x^5-12x^3
Étape 1
Écrivez comme une fonction.
Étape 2
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.1.2.3
Associez et .
Étape 2.1.2.4
Associez et .
Étape 2.1.2.5
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.5.1
Factorisez à partir de .
Étape 2.1.2.5.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.5.2.1
Factorisez à partir de .
Étape 2.1.2.5.2.2
Annulez le facteur commun.
Étape 2.1.2.5.2.3
Réécrivez l’expression.
Étape 2.1.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.1.3.3
Multipliez par .
Étape 2.2
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.2.3
Associez et .
Étape 2.2.2.4
Associez et .
Étape 2.2.2.5
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.5.1
Factorisez à partir de .
Étape 2.2.2.5.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.5.2.1
Factorisez à partir de .
Étape 2.2.2.5.2.2
Annulez le facteur commun.
Étape 2.2.2.5.2.3
Réécrivez l’expression.
Étape 2.2.2.5.2.4
Divisez par .
Étape 2.2.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.3.3
Multipliez par .
Étape 2.3
La dérivée seconde de par rapport à est .
Étape 3
Définissez la dérivée seconde égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Définissez la dérivée seconde égale à .
Étape 3.2
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Factorisez à partir de .
Étape 3.2.1.2
Factorisez à partir de .
Étape 3.2.1.3
Factorisez à partir de .
Étape 3.2.2
Réécrivez comme .
Étape 3.2.3
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.3.1
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 3.2.3.2
Supprimez les parenthèses inutiles.
Étape 3.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 3.4
Définissez égal à .
Étape 3.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.5.1
Définissez égal à .
Étape 3.5.2
Soustrayez des deux côtés de l’équation.
Étape 3.6
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.6.1
Définissez égal à .
Étape 3.6.2
Ajoutez aux deux côtés de l’équation.
Étape 3.7
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 4
Déterminez les points où se trouve la dérivée seconde .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Remplacez dans pour déterminer la valeur de .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Remplacez la variable par dans l’expression.
Étape 4.1.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1.1
L’élévation de à toute puissance positive produit .
Étape 4.1.2.1.2
Multipliez par .
Étape 4.1.2.1.3
L’élévation de à toute puissance positive produit .
Étape 4.1.2.1.4
Multipliez par .
Étape 4.1.2.2
Additionnez et .
Étape 4.1.2.3
La réponse finale est .
Étape 4.2
Le point trouvé en remplaçant dans est . Ce point peut être un point d’inflexion.
Étape 4.3
Remplacez dans pour déterminer la valeur de .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Remplacez la variable par dans l’expression.
Étape 4.3.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.1.1
Élevez à la puissance .
Étape 4.3.2.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.1.2.1
Factorisez à partir de .
Étape 4.3.2.1.2.2
Factorisez à partir de .
Étape 4.3.2.1.2.3
Annulez le facteur commun.
Étape 4.3.2.1.2.4
Réécrivez l’expression.
Étape 4.3.2.1.3
Associez et .
Étape 4.3.2.1.4
Placez le signe moins devant la fraction.
Étape 4.3.2.1.5
Élevez à la puissance .
Étape 4.3.2.1.6
Multipliez par .
Étape 4.3.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.3.2.3
Associez et .
Étape 4.3.2.4
Associez les numérateurs sur le dénominateur commun.
Étape 4.3.2.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.5.1
Multipliez par .
Étape 4.3.2.5.2
Additionnez et .
Étape 4.3.2.6
La réponse finale est .
Étape 4.4
Le point trouvé en remplaçant dans est . Ce point peut être un point d’inflexion.
Étape 4.5
Remplacez dans pour déterminer la valeur de .
Appuyez ici pour voir plus d’étapes...
Étape 4.5.1
Remplacez la variable par dans l’expression.
Étape 4.5.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 4.5.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.5.2.1.1
Élevez à la puissance .
Étape 4.5.2.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.5.2.1.2.1
Factorisez à partir de .
Étape 4.5.2.1.2.2
Factorisez à partir de .
Étape 4.5.2.1.2.3
Annulez le facteur commun.
Étape 4.5.2.1.2.4
Réécrivez l’expression.
Étape 4.5.2.1.3
Associez et .
Étape 4.5.2.1.4
Élevez à la puissance .
Étape 4.5.2.1.5
Multipliez par .
Étape 4.5.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.5.2.3
Associez et .
Étape 4.5.2.4
Associez les numérateurs sur le dénominateur commun.
Étape 4.5.2.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.5.2.5.1
Multipliez par .
Étape 4.5.2.5.2
Soustrayez de .
Étape 4.5.2.6
Placez le signe moins devant la fraction.
Étape 4.5.2.7
La réponse finale est .
Étape 4.6
Le point trouvé en remplaçant dans est . Ce point peut être un point d’inflexion.
Étape 4.7
Déterminez les points qui pourraient être des points d’inflexion.
Étape 5
Divisez en intervalles autour des points qui pourraient potentiellement être des points d’inflexion.
Étape 6
Remplacez une valeur de l’intervalle dans la dérivée seconde afin de déterminer si elle est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.1
Élevez à la puissance .
Étape 6.2.1.2
Multipliez par .
Étape 6.2.1.3
Multipliez par .
Étape 6.2.2
Additionnez et .
Étape 6.2.3
La réponse finale est .
Étape 6.3
Sur , la dérivée seconde est . Comme elle est négative, la dérivée seconde est décroissante sur l’intervalle
Diminue sur depuis
Diminue sur depuis
Étape 7
Remplacez une valeur de l’intervalle dans la dérivée seconde afin de déterminer si elle est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1.1
Élevez à la puissance .
Étape 7.2.1.2
Multipliez par .
Étape 7.2.1.3
Multipliez par .
Étape 7.2.2
Additionnez et .
Étape 7.2.3
La réponse finale est .
Étape 7.3
Sur , la dérivée seconde est . Comme elle est positive, la dérivée seconde augmente sur l’intervalle .
Augmente sur depuis
Augmente sur depuis
Étape 8
Remplacez une valeur de l’intervalle dans la dérivée seconde afin de déterminer si elle est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Remplacez la variable par dans l’expression.
Étape 8.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1.1
Élevez à la puissance .
Étape 8.2.1.2
Multipliez par .
Étape 8.2.1.3
Multipliez par .
Étape 8.2.2
Soustrayez de .
Étape 8.2.3
La réponse finale est .
Étape 8.3
Sur , la dérivée seconde est . Comme elle est négative, la dérivée seconde est décroissante sur l’intervalle
Diminue sur depuis
Diminue sur depuis
Étape 9
Remplacez une valeur de l’intervalle dans la dérivée seconde afin de déterminer si elle est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Remplacez la variable par dans l’expression.
Étape 9.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 9.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 9.2.1.1
Élevez à la puissance .
Étape 9.2.1.2
Multipliez par .
Étape 9.2.1.3
Multipliez par .
Étape 9.2.2
Soustrayez de .
Étape 9.2.3
La réponse finale est .
Étape 9.3
Sur , la dérivée seconde est . Comme elle est positive, la dérivée seconde augmente sur l’intervalle .
Augmente sur depuis
Augmente sur depuis
Étape 10
Un point d’inflexion est un point sur une courbe sur lequel la concavité passe du signe plus au signe moins ou du signe moins au signe plus. Dans ce cas, les points d’inflexion sont .
Étape 11