Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Écrivez comme une fonction.
Étape 2
La fonction peut être trouvée en déterminant l’intégrale infinie de la dérivée .
Étape 3
Définissez l’intégrale à résoudre.
Étape 4
Étape 4.1
Laissez . Déterminez .
Étape 4.1.1
Différenciez .
Étape 4.1.2
Différenciez.
Étape 4.1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.1.2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.3
La dérivée de par rapport à est .
Étape 4.1.4
Additionnez et .
Étape 4.2
Réécrivez le problème en utilisant et .
Étape 5
Étape 5.1
Retirez du dénominateur en l’élevant à la puissance .
Étape 5.2
Multipliez les exposants dans .
Étape 5.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 5.2.2
Multipliez par .
Étape 6
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 7
Réécrivez comme .
Étape 8
Remplacez toutes les occurrences de par .
Étape 9
La réponse est la dérivée première de la fonction .