Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Divisez le numérateur et le dénominateur par la plus forte puissance de dans le dénominateur, qui est .
Étape 2
Étape 2.1
Simplifiez chaque terme.
Étape 2.1.1
Annulez le facteur commun à et .
Étape 2.1.1.1
Factorisez à partir de .
Étape 2.1.1.2
Annulez les facteurs communs.
Étape 2.1.1.2.1
Factorisez à partir de .
Étape 2.1.1.2.2
Annulez le facteur commun.
Étape 2.1.1.2.3
Réécrivez l’expression.
Étape 2.1.2
Annulez le facteur commun à et .
Étape 2.1.2.1
Factorisez à partir de .
Étape 2.1.2.2
Annulez les facteurs communs.
Étape 2.1.2.2.1
Factorisez à partir de .
Étape 2.1.2.2.2
Annulez le facteur commun.
Étape 2.1.2.2.3
Réécrivez l’expression.
Étape 2.1.3
Placez le signe moins devant la fraction.
Étape 2.2
Simplifiez chaque terme.
Étape 2.2.1
Annulez le facteur commun de .
Étape 2.2.1.1
Annulez le facteur commun.
Étape 2.2.1.2
Réécrivez l’expression.
Étape 2.2.2
Placez le signe moins devant la fraction.
Étape 2.3
Divisez la limite en utilisant la règle du quotient des limites sur la limite lorsque approche de .
Étape 2.4
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 2.5
Placez le terme hors de la limite car il est constant par rapport à .
Étape 3
Comme son numérateur approche d’un nombre réel alors que son dénominateur n’a pas de borne, la fraction approche de .
Étape 4
Placez le terme hors de la limite car il est constant par rapport à .
Étape 5
Comme son numérateur approche d’un nombre réel alors que son dénominateur n’a pas de borne, la fraction approche de .
Étape 6
Comme son numérateur approche d’un nombre réel alors que son dénominateur n’a pas de borne, la fraction approche de .
Étape 7
Étape 7.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 7.2
Évaluez la limite de qui est constante lorsque approche de .
Étape 7.3
Placez le terme hors de la limite car il est constant par rapport à .
Étape 8
Comme son numérateur approche d’un nombre réel alors que son dénominateur n’a pas de borne, la fraction approche de .
Étape 9
Étape 9.1
Simplifiez le numérateur.
Étape 9.1.1
Multipliez par .
Étape 9.1.2
Multipliez par .
Étape 9.1.3
Additionnez et .
Étape 9.1.4
Additionnez et .
Étape 9.2
Simplifiez le dénominateur.
Étape 9.2.1
Multipliez par .
Étape 9.2.2
Additionnez et .
Étape 9.3
Divisez par .