Calcul infinitésimal Exemples

Encontre a Derivada de Second 1/2x^4+2x^3
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.2.3
Associez et .
Étape 1.2.4
Associez et .
Étape 1.2.5
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.5.1
Factorisez à partir de .
Étape 1.2.5.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.5.2.1
Factorisez à partir de .
Étape 1.2.5.2.2
Annulez le facteur commun.
Étape 1.2.5.2.3
Réécrivez l’expression.
Étape 1.2.5.2.4
Divisez par .
Étape 1.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3.3
Multipliez par .
Étape 2
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.3
Multipliez par .
Étape 2.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.3
Multipliez par .