Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Laissez , où . Puis . Depuis , est positif.
Étape 2
Étape 2.1
Simplifiez .
Étape 2.1.1
Simplifiez chaque terme.
Étape 2.1.1.1
Appliquez la règle de produit à .
Étape 2.1.1.2
Élevez à la puissance .
Étape 2.1.1.3
Multipliez par .
Étape 2.1.2
Factorisez à partir de .
Étape 2.1.3
Factorisez à partir de .
Étape 2.1.4
Factorisez à partir de .
Étape 2.1.5
Appliquez l’identité pythagoricienne.
Étape 2.1.6
Réécrivez comme .
Étape 2.1.7
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.2
Réduisez l’expression en annulant les facteurs communs.
Étape 2.2.1
Annulez le facteur commun de .
Étape 2.2.1.1
Annulez le facteur commun.
Étape 2.2.1.2
Réécrivez l’expression.
Étape 2.2.2
Simplifiez
Étape 2.2.2.1
Factorisez à partir de .
Étape 2.2.2.2
Appliquez la règle de produit à .
Étape 2.2.2.3
Élevez à la puissance .
Étape 3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4
Utilisez la formule de l’angle moitié pour réécrire en .
Étape 5
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 6
Étape 6.1
Associez et .
Étape 6.2
Annulez le facteur commun à et .
Étape 6.2.1
Factorisez à partir de .
Étape 6.2.2
Annulez les facteurs communs.
Étape 6.2.2.1
Factorisez à partir de .
Étape 6.2.2.2
Annulez le facteur commun.
Étape 6.2.2.3
Réécrivez l’expression.
Étape 6.2.2.4
Divisez par .
Étape 7
Séparez l’intégrale unique en plusieurs intégrales.
Étape 8
Appliquez la règle de la constante.
Étape 9
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 10
Étape 10.1
Laissez . Déterminez .
Étape 10.1.1
Différenciez .
Étape 10.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 10.1.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 10.1.4
Multipliez par .
Étape 10.2
Remplacez la limite inférieure pour dans .
Étape 10.3
Multipliez par .
Étape 10.4
Remplacez la limite supérieure pour dans .
Étape 10.5
Annulez le facteur commun de .
Étape 10.5.1
Factorisez à partir de .
Étape 10.5.2
Annulez le facteur commun.
Étape 10.5.3
Réécrivez l’expression.
Étape 10.6
Les valeurs déterminées pour et seront utilisées pour évaluer l’intégrale définie.
Étape 10.7
Réécrivez le problème en utilisant , et les nouvelles limites d’intégration.
Étape 11
Associez et .
Étape 12
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 13
L’intégrale de par rapport à est .
Étape 14
Étape 14.1
Évaluez sur et sur .
Étape 14.2
Simplifiez l’expression.
Étape 14.2.1
Évaluez sur et sur .
Étape 14.2.2
Additionnez et .
Étape 14.3
Simplifiez
Étape 14.3.1
La valeur exacte de est .
Étape 14.3.2
La valeur exacte de est .
Étape 14.3.3
Multipliez par .
Étape 14.3.4
Additionnez et .
Étape 14.3.5
Multipliez par .
Étape 14.3.6
Multipliez par .
Étape 14.4
Simplifiez
Étape 14.4.1
Appliquez la propriété distributive.
Étape 14.4.2
Annulez le facteur commun de .
Étape 14.4.2.1
Factorisez à partir de .
Étape 14.4.2.2
Annulez le facteur commun.
Étape 14.4.2.3
Réécrivez l’expression.
Étape 14.4.3
Annulez le facteur commun de .
Étape 14.4.3.1
Placez le signe négatif initial dans dans le numérateur.
Étape 14.4.3.2
Factorisez à partir de .
Étape 14.4.3.3
Annulez le facteur commun.
Étape 14.4.3.4
Réécrivez l’expression.
Étape 14.4.4
Placez le signe moins devant la fraction.
Étape 15
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :