Calcul infinitésimal Exemples

Trouver la primitive 6/(x^3)-4e^(2x)+7
Étape 1
Écrivez comme une fonction.
Étape 2
La fonction peut être trouvée en déterminant l’intégrale infinie de la dérivée .
Étape 3
Définissez l’intégrale à résoudre.
Étape 4
Séparez l’intégrale unique en plusieurs intégrales.
Étape 5
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 6
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Retirez du dénominateur en l’élevant à la puissance .
Étape 6.2
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 6.2.2
Multipliez par .
Étape 7
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 8
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Associez et .
Étape 8.2
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 9
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 10
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 10.1.1
Différenciez .
Étape 10.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 10.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 10.1.4
Multipliez par .
Étape 10.2
Réécrivez le problème en utilisant et .
Étape 11
Associez et .
Étape 12
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 13
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 13.1
Associez et .
Étape 13.2
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 13.2.1
Factorisez à partir de .
Étape 13.2.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 13.2.2.1
Factorisez à partir de .
Étape 13.2.2.2
Annulez le facteur commun.
Étape 13.2.2.3
Réécrivez l’expression.
Étape 13.2.2.4
Divisez par .
Étape 14
L’intégrale de par rapport à est .
Étape 15
Appliquez la règle de la constante.
Étape 16
Simplifiez
Étape 17
Remplacez toutes les occurrences de par .
Étape 18
La réponse est la dérivée première de la fonction .