Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.2.2
La dérivée de par rapport à est .
Étape 1.2.3
Remplacez toutes les occurrences de par .
Étape 1.3
Différenciez.
Étape 1.3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.4
Simplifiez l’expression.
Étape 1.3.4.1
Additionnez et .
Étape 1.3.4.2
Multipliez par .
Étape 2
Étape 2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2.2
La dérivée de par rapport à est .
Étape 2.2.3
Remplacez toutes les occurrences de par .
Étape 2.3
Différenciez.
Étape 2.3.1
Multipliez par .
Étape 2.3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.3.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.5
Simplifiez l’expression.
Étape 2.3.5.1
Additionnez et .
Étape 2.3.5.2
Multipliez par .
Étape 3
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 4
Étape 4.1
Divisez chaque terme dans par .
Étape 4.2
Simplifiez le côté gauche.
Étape 4.2.1
Annulez le facteur commun de .
Étape 4.2.1.1
Annulez le facteur commun.
Étape 4.2.1.2
Divisez par .
Étape 4.3
Simplifiez le côté droit.
Étape 4.3.1
Divisez par .
Étape 5
Prenez le cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur du cosinus.
Étape 6
Étape 6.1
La valeur exacte de est .
Étape 7
Étape 7.1
Ajoutez aux deux côtés de l’équation.
Étape 7.2
Associez les numérateurs sur le dénominateur commun.
Étape 7.3
Additionnez et .
Étape 7.4
Annulez le facteur commun de .
Étape 7.4.1
Annulez le facteur commun.
Étape 7.4.2
Divisez par .
Étape 8
La fonction cosinus est positive dans les premier et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 9
Étape 9.1
Simplifiez .
Étape 9.1.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 9.1.2
Associez les fractions.
Étape 9.1.2.1
Associez et .
Étape 9.1.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 9.1.3
Simplifiez le numérateur.
Étape 9.1.3.1
Multipliez par .
Étape 9.1.3.2
Soustrayez de .
Étape 9.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 9.2.1
Ajoutez aux deux côtés de l’équation.
Étape 9.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 9.2.3
Additionnez et .
Étape 9.2.4
Annulez le facteur commun à et .
Étape 9.2.4.1
Factorisez à partir de .
Étape 9.2.4.2
Annulez les facteurs communs.
Étape 9.2.4.2.1
Factorisez à partir de .
Étape 9.2.4.2.2
Annulez le facteur commun.
Étape 9.2.4.2.3
Réécrivez l’expression.
Étape 9.2.4.2.4
Divisez par .
Étape 10
La solution de l’équation est .
Étape 11
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 12
Étape 12.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 12.2
Associez les fractions.
Étape 12.2.1
Associez et .
Étape 12.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 12.3
Simplifiez le numérateur.
Étape 12.3.1
Déplacez à gauche de .
Étape 12.3.2
Soustrayez de .
Étape 12.4
La valeur exacte de est .
Étape 12.5
Multipliez par .
Étape 13
est un maximum local car la valeur de la dérivée seconde est négative. On parle de test de la dérivée seconde.
est un maximum local
Étape 14
Étape 14.1
Remplacez la variable par dans l’expression.
Étape 14.2
Simplifiez le résultat.
Étape 14.2.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 14.2.2
Associez les fractions.
Étape 14.2.2.1
Associez et .
Étape 14.2.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 14.2.3
Simplifiez le numérateur.
Étape 14.2.3.1
Déplacez à gauche de .
Étape 14.2.3.2
Soustrayez de .
Étape 14.2.4
La valeur exacte de est .
Étape 14.2.5
Multipliez par .
Étape 14.2.6
La réponse finale est .
Étape 15
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 16
Étape 16.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 16.2
Associez les fractions.
Étape 16.2.1
Associez et .
Étape 16.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 16.3
Simplifiez le numérateur.
Étape 16.3.1
Multipliez par .
Étape 16.3.2
Soustrayez de .
Étape 16.4
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car le sinus est négatif dans le quatrième quadrant.
Étape 16.5
La valeur exacte de est .
Étape 16.6
Multipliez .
Étape 16.6.1
Multipliez par .
Étape 16.6.2
Multipliez par .
Étape 17
est un minimum local car la valeur de la dérivée seconde est positive. On parle de test de la dérivée seconde.
est un minimum local
Étape 18
Étape 18.1
Remplacez la variable par dans l’expression.
Étape 18.2
Simplifiez le résultat.
Étape 18.2.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 18.2.2
Associez les fractions.
Étape 18.2.2.1
Associez et .
Étape 18.2.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 18.2.3
Simplifiez le numérateur.
Étape 18.2.3.1
Multipliez par .
Étape 18.2.3.2
Soustrayez de .
Étape 18.2.4
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car le sinus est négatif dans le quatrième quadrant.
Étape 18.2.5
La valeur exacte de est .
Étape 18.2.6
Multipliez .
Étape 18.2.6.1
Multipliez par .
Étape 18.2.6.2
Multipliez par .
Étape 18.2.7
La réponse finale est .
Étape 19
Ce sont les extrema locaux pour .
est un maximum local
est un minimum local
Étape 20