Calcul infinitésimal Exemples

Évaluer la limite limite lorsque x approche de negative infinity de (5x)/(x^2-10x+3)
Étape 1
Placez le terme hors de la limite car il est constant par rapport à .
Étape 2
Divisez le numérateur et le dénominateur par la plus forte puissance de dans le dénominateur, qui est .
Étape 3
Évaluez la limite.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Élevez à la puissance .
Étape 3.1.2
Factorisez à partir de .
Étape 3.1.3
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.3.1
Factorisez à partir de .
Étape 3.1.3.2
Annulez le facteur commun.
Étape 3.1.3.3
Réécrivez l’expression.
Étape 3.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Annulez le facteur commun.
Étape 3.2.1.2
Réécrivez l’expression.
Étape 3.2.2
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Factorisez à partir de .
Étape 3.2.2.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.2.1
Factorisez à partir de .
Étape 3.2.2.2.2
Annulez le facteur commun.
Étape 3.2.2.2.3
Réécrivez l’expression.
Étape 3.2.3
Placez le signe moins devant la fraction.
Étape 3.3
Divisez la limite en utilisant la règle du quotient des limites sur la limite lorsque approche de .
Étape 4
Comme son numérateur approche d’un nombre réel alors que son dénominateur n’a pas de borne, la fraction approche de .
Étape 5
Évaluez la limite.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 5.2
Évaluez la limite de qui est constante lorsque approche de .
Étape 5.3
Placez le terme hors de la limite car il est constant par rapport à .
Étape 6
Comme son numérateur approche d’un nombre réel alors que son dénominateur n’a pas de borne, la fraction approche de .
Étape 7
Placez le terme hors de la limite car il est constant par rapport à .
Étape 8
Comme son numérateur approche d’un nombre réel alors que son dénominateur n’a pas de borne, la fraction approche de .
Étape 9
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 9.1.1
Multipliez par .
Étape 9.1.2
Multipliez par .
Étape 9.1.3
Additionnez et .
Étape 9.1.4
Additionnez et .
Étape 9.2
Divisez par .
Étape 9.3
Multipliez par .