Calcul infinitésimal Exemples

Évaluer à l''aide de la règle de l''Hôpital limite lorsque x approche de 0 de (cos(3x)-1)/(e^(-x)-1)
Étape 1
Évaluez la limite du numérateur et la limite du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 1.2
Évaluez la limite du numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Évaluez la limite.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.2.1.2
Déplacez la limite dans la fonction trigonométrique car le cosinus est continu.
Étape 1.2.1.3
Placez le terme hors de la limite car il est constant par rapport à .
Étape 1.2.1.4
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.2.2
Évaluez la limite de en insérant pour .
Étape 1.2.3
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.1.1
Multipliez par .
Étape 1.2.3.1.2
La valeur exacte de est .
Étape 1.2.3.1.3
Multipliez par .
Étape 1.2.3.2
Soustrayez de .
Étape 1.3
Évaluez la limite du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.3.2
Placez la limite dans l’exposant.
Étape 1.3.3
Placez le terme hors de la limite car il est constant par rapport à .
Étape 1.3.4
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.3.5
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.5.1
Évaluez la limite de en insérant pour .
Étape 1.3.5.2
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.5.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.5.2.1.1
Tout ce qui est élevé à la puissance est .
Étape 1.3.5.2.1.2
Multipliez par .
Étape 1.3.5.2.2
Soustrayez de .
Étape 1.3.5.2.3
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.3.5.3
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.3.6
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 3
Déterminez la dérivée du numérateur et du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Différenciez le numérateur et le dénominateur.
Étape 3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.3.1.2
La dérivée de par rapport à est .
Étape 3.3.1.3
Remplacez toutes les occurrences de par .
Étape 3.3.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.3.4
Multipliez par .
Étape 3.3.5
Multipliez par .
Étape 3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.5
Additionnez et .
Étape 3.6
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.7
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.7.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.7.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.7.1.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 3.7.1.3
Remplacez toutes les occurrences de par .
Étape 3.7.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.7.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.7.4
Multipliez par .
Étape 3.7.5
Déplacez à gauche de .
Étape 3.7.6
Réécrivez comme .
Étape 3.8
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.9
Additionnez et .
Étape 4
Placez le terme hors de la limite car il est constant par rapport à .
Étape 5
Divisez la limite en utilisant la règle du quotient des limites sur la limite lorsque approche de .
Étape 6
Déplacez la limite dans la fonction trigonométrique car le sinus est continu.
Étape 7
Placez le terme hors de la limite car il est constant par rapport à .
Étape 8
Placez le terme hors de la limite car il est constant par rapport à .
Étape 9
Placez la limite dans l’exposant.
Étape 10
Placez le terme hors de la limite car il est constant par rapport à .
Étape 11
Évaluez les limites en insérant pour toutes les occurrences de .
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Évaluez la limite de en insérant pour .
Étape 11.2
Évaluez la limite de en insérant pour .
Étape 12
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 12.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 12.1.1
Multipliez par .
Étape 12.1.2
La valeur exacte de est .
Étape 12.2
Tout ce qui est élevé à la puissance est .
Étape 12.3
Multipliez par .
Étape 12.4
Divisez par .
Étape 12.5
Multipliez par .